An Example of a DNNClassifier for the Iris dataset.

models/premade_estimator.py at master · tensorflow/models · GitHub https://github.com/tensorflow/models/blob/master/samples/core/get_started/premade_estimator.py

import pandas as pd
import tensorflow as tf TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
TEST_URL = "http://download.tensorflow.org/data/iris_test.csv" CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth',
'PetalLength', 'PetalWidth', 'Species']
SPECIES = ['Setosa', 'Versicolor', 'Virginica'] def maybe_download():
# train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-], TRAIN_URL)
# test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-], TEST_URL)
#
# return train_path, test_path
return 'iris_training.csv', 'iris_test.csv' def load_data(y_name='Species'):
"""Returns the iris dataset as (train_x, train_y), (test_x, test_y)."""
train_path, test_path = maybe_download() train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=)
train_x, train_y = train, train.pop(y_name) test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=)
test_x, test_y = test, test.pop(y_name) return (train_x, train_y), (test_x, test_y) def train_input_fn(features, labels, batch_size):
"""An input function for training"""
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels)) # Shuffle, repeat, and batch the examples.
dataset = dataset.shuffle().repeat().batch(batch_size) # Return the dataset.
return dataset def eval_input_fn(features, labels, batch_size):
"""An input function for evaluation or prediction"""
features = dict(features)
if labels is None:
# No labels, use only features.
inputs = features
else:
inputs = (features, labels) # Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples
assert batch_size is not None, "batch_size must not be None"
dataset = dataset.batch(batch_size) # Return the dataset.
return dataset # The remainder of this file contains a simple example of a csv parser,
# implemented using a the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in
# the `record_defaults` argument.
CSV_TYPES = [[0.0], [0.0], [0.0], [0.0], []] def _parse_line(line):
# Decode the line into its fields
fields = tf.decode_csv(line, record_defaults=CSV_TYPES) # Pack the result into a dictionary
features = dict(zip(CSV_COLUMN_NAMES, fields)) # Separate the label from the features
label = features.pop('Species') return features, label def csv_input_fn(csv_path, batch_size):
# Create a dataset containing the text lines.
dataset = tf.data.TextLineDataset(csv_path).skip() # Parse each line.
dataset = dataset.map(_parse_line) # Shuffle, repeat, and batch the examples.
dataset = dataset.shuffle().repeat().batch(batch_size) # Return the dataset.
return dataset
#  Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An Example of a DNNClassifier for the Iris dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import argparse
import tensorflow as tf import iris_data parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--train_steps', default=1000, type=int,
help='number of training steps') def main(argv):
args = parser.parse_args(argv[1:]) # Fetch the data
(train_x, train_y), (test_x, test_y) = iris_data.load_data() # Feature columns describe how to use the input.
my_feature_columns = []
for key in train_x.keys():
my_feature_columns.append(tf.feature_column.numeric_column(key=key)) # Build 2 hidden layer DNN with 10, 10 units respectively.
classifier = tf.estimator.DNNClassifier(
feature_columns=my_feature_columns,
# Two hidden layers of 10 nodes each.
hidden_units=[10, 10],
# The model must choose between 3 classes.
n_classes=3) # Train the Model.
classifier.train(
input_fn=lambda:iris_data.train_input_fn(train_x, train_y,
args.batch_size),
steps=args.train_steps) # Evaluate the model.
eval_result = classifier.evaluate(
input_fn=lambda:iris_data.eval_input_fn(test_x, test_y,
args.batch_size)) print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result)) # Generate predictions from the model
expected = ['Setosa', 'Versicolor', 'Virginica']
predict_x = {
'SepalLength': [5.1, 5.9, 6.9],
'SepalWidth': [3.3, 3.0, 3.1],
'PetalLength': [1.7, 4.2, 5.4],
'PetalWidth': [0.5, 1.5, 2.1],
} predictions = classifier.predict(
input_fn=lambda:iris_data.eval_input_fn(predict_x,
labels=None,
batch_size=args.batch_size)) template = ('\nPrediction is "{}" ({:.1f}%), expected "{}"') for pred_dict, expec in zip(predictions, expected):
class_id = pred_dict['class_ids'][0]
probability = pred_dict['probabilities'][class_id] print(template.format(iris_data.SPECIES[class_id],
100 * probability, expec)) if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main)
C:\Users\Public\py36\python.exe C:/Users/sas/PycharmProjects/py_win_to_unix/sci/iris/premade_estimator.py
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: D:\MYTMPH~1\tmpsp673n0v
INFO:tensorflow:Using config: {'_model_dir': 'D:\\MYTMPH~1\\tmpsp673n0v', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': None, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x000001A3C68216D8>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
2018-04-27 19:57:52.516828: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 1 into D:\MYTMPH~1\tmpsp673n0v\model.ckpt.
INFO:tensorflow:loss = 276.79517, step = 1
INFO:tensorflow:global_step/sec: 631.226
INFO:tensorflow:loss = 33.67822, step = 101 (0.158 sec)
INFO:tensorflow:global_step/sec: 923.465
INFO:tensorflow:loss = 17.75303, step = 201 (0.107 sec)
INFO:tensorflow:global_step/sec: 1072.41
INFO:tensorflow:loss = 10.760817, step = 301 (0.094 sec)
INFO:tensorflow:global_step/sec: 1262.46
INFO:tensorflow:loss = 10.723449, step = 401 (0.079 sec)
INFO:tensorflow:global_step/sec: 852.425
INFO:tensorflow:loss = 7.739768, step = 501 (0.117 sec)
INFO:tensorflow:global_step/sec: 1017.69
INFO:tensorflow:loss = 6.8775907, step = 601 (0.098 sec)
INFO:tensorflow:global_step/sec: 1216.27
INFO:tensorflow:loss = 8.007765, step = 701 (0.082 sec)
INFO:tensorflow:global_step/sec: 898.502
INFO:tensorflow:loss = 4.028232, step = 801 (0.111 sec)
INFO:tensorflow:global_step/sec: 1108.16
INFO:tensorflow:loss = 4.0325384, step = 901 (0.090 sec)
INFO:tensorflow:Saving checkpoints for 1000 into D:\MYTMPH~1\tmpsp673n0v\model.ckpt.
INFO:tensorflow:Loss for final step: 7.3920045.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2018-04-27-11:57:54
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from D:\MYTMPH~1\tmpsp673n0v\model.ckpt-1000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Finished evaluation at 2018-04-27-11:57:54
INFO:tensorflow:Saving dict for global step 1000: accuracy = 0.96666664, average_loss = 0.060932837, global_step = 1000, loss = 1.8279852 Test set accuracy: 0.967 INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from D:\MYTMPH~1\tmpsp673n0v\model.ckpt-1000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op. Prediction is "Setosa" (100.0%), expected "Setosa" Prediction is "Versicolor" (98.8%), expected "Versicolor" Prediction is "Virginica" (97.5%), expected "Virginica" Process finished with exit code 0

  

120,4,setosa,versicolor,virginica
6.4,2.8,5.6,2.2,2
5.0,2.3,3.3,1.0,1
4.9,2.5,4.5,1.7,2
4.9,3.1,1.5,0.1,0
5.7,3.8,1.7,0.3,0
4.4,3.2,1.3,0.2,0
5.4,3.4,1.5,0.4,0
6.9,3.1,5.1,2.3,2
6.7,3.1,4.4,1.4,1
5.1,3.7,1.5,0.4,0
5.2,2.7,3.9,1.4,1
6.9,3.1,4.9,1.5,1
5.8,4.0,1.2,0.2,0
5.4,3.9,1.7,0.4,0
7.7,3.8,6.7,2.2,2
6.3,3.3,4.7,1.6,1
6.8,3.2,5.9,2.3,2
7.6,3.0,6.6,2.1,2
6.4,3.2,5.3,2.3,2
5.7,4.4,1.5,0.4,0
6.7,3.3,5.7,2.1,2
6.4,2.8,5.6,2.1,2
5.4,3.9,1.3,0.4,0
6.1,2.6,5.6,1.4,2
7.2,3.0,5.8,1.6,2
5.2,3.5,1.5,0.2,0
5.8,2.6,4.0,1.2,1
5.9,3.0,5.1,1.8,2
5.4,3.0,4.5,1.5,1
6.7,3.0,5.0,1.7,1
6.3,2.3,4.4,1.3,1
5.1,2.5,3.0,1.1,1
6.4,3.2,4.5,1.5,1
6.8,3.0,5.5,2.1,2
6.2,2.8,4.8,1.8,2
6.9,3.2,5.7,2.3,2
6.5,3.2,5.1,2.0,2
5.8,2.8,5.1,2.4,2
5.1,3.8,1.5,0.3,0
4.8,3.0,1.4,0.3,0
7.9,3.8,6.4,2.0,2
5.8,2.7,5.1,1.9,2
6.7,3.0,5.2,2.3,2
5.1,3.8,1.9,0.4,0
4.7,3.2,1.6,0.2,0
6.0,2.2,5.0,1.5,2
4.8,3.4,1.6,0.2,0
7.7,2.6,6.9,2.3,2
4.6,3.6,1.0,0.2,0
7.2,3.2,6.0,1.8,2
5.0,3.3,1.4,0.2,0
6.6,3.0,4.4,1.4,1
6.1,2.8,4.0,1.3,1
5.0,3.2,1.2,0.2,0
7.0,3.2,4.7,1.4,1
6.0,3.0,4.8,1.8,2
7.4,2.8,6.1,1.9,2
5.8,2.7,5.1,1.9,2
6.2,3.4,5.4,2.3,2
5.0,2.0,3.5,1.0,1
5.6,2.5,3.9,1.1,1
6.7,3.1,5.6,2.4,2
6.3,2.5,5.0,1.9,2
6.4,3.1,5.5,1.8,2
6.2,2.2,4.5,1.5,1
7.3,2.9,6.3,1.8,2
4.4,3.0,1.3,0.2,0
7.2,3.6,6.1,2.5,2
6.5,3.0,5.5,1.8,2
5.0,3.4,1.5,0.2,0
4.7,3.2,1.3,0.2,0
6.6,2.9,4.6,1.3,1
5.5,3.5,1.3,0.2,0
7.7,3.0,6.1,2.3,2
6.1,3.0,4.9,1.8,2
4.9,3.1,1.5,0.1,0
5.5,2.4,3.8,1.1,1
5.7,2.9,4.2,1.3,1
6.0,2.9,4.5,1.5,1
6.4,2.7,5.3,1.9,2
5.4,3.7,1.5,0.2,0
6.1,2.9,4.7,1.4,1
6.5,2.8,4.6,1.5,1
5.6,2.7,4.2,1.3,1
6.3,3.4,5.6,2.4,2
4.9,3.1,1.5,0.1,0
6.8,2.8,4.8,1.4,1
5.7,2.8,4.5,1.3,1
6.0,2.7,5.1,1.6,1
5.0,3.5,1.3,0.3,0
6.5,3.0,5.2,2.0,2
6.1,2.8,4.7,1.2,1
5.1,3.5,1.4,0.3,0
4.6,3.1,1.5,0.2,0
6.5,3.0,5.8,2.2,2
4.6,3.4,1.4,0.3,0
4.6,3.2,1.4,0.2,0
7.7,2.8,6.7,2.0,2
5.9,3.2,4.8,1.8,1
5.1,3.8,1.6,0.2,0
4.9,3.0,1.4,0.2,0
4.9,2.4,3.3,1.0,1
4.5,2.3,1.3,0.3,0
5.8,2.7,4.1,1.0,1
5.0,3.4,1.6,0.4,0
5.2,3.4,1.4,0.2,0
5.3,3.7,1.5,0.2,0
5.0,3.6,1.4,0.2,0
5.6,2.9,3.6,1.3,1
4.8,3.1,1.6,0.2,0
6.3,2.7,4.9,1.8,2
5.7,2.8,4.1,1.3,1
5.0,3.0,1.6,0.2,0
6.3,3.3,6.0,2.5,2
5.0,3.5,1.6,0.6,0
5.5,2.6,4.4,1.2,1
5.7,3.0,4.2,1.2,1
4.4,2.9,1.4,0.2,0
4.8,3.0,1.4,0.1,0
5.5,2.4,3.7,1.0,1

  

30,4,setosa,versicolor,virginica
5.9,3.0,4.2,1.5,1
6.9,3.1,5.4,2.1,2
5.1,3.3,1.7,0.5,0
6.0,3.4,4.5,1.6,1
5.5,2.5,4.0,1.3,1
6.2,2.9,4.3,1.3,1
5.5,4.2,1.4,0.2,0
6.3,2.8,5.1,1.5,2
5.6,3.0,4.1,1.3,1
6.7,2.5,5.8,1.8,2
7.1,3.0,5.9,2.1,2
4.3,3.0,1.1,0.1,0
5.6,2.8,4.9,2.0,2
5.5,2.3,4.0,1.3,1
6.0,2.2,4.0,1.0,1
5.1,3.5,1.4,0.2,0
5.7,2.6,3.5,1.0,1
4.8,3.4,1.9,0.2,0
5.1,3.4,1.5,0.2,0
5.7,2.5,5.0,2.0,2
5.4,3.4,1.7,0.2,0
5.6,3.0,4.5,1.5,1
6.3,2.9,5.6,1.8,2
6.3,2.5,4.9,1.5,1
5.8,2.7,3.9,1.2,1
6.1,3.0,4.6,1.4,1
5.2,4.1,1.5,0.1,0
6.7,3.1,4.7,1.5,1
6.7,3.3,5.7,2.5,2
6.4,2.9,4.3,1.3,1

  

import pandas as pd
import tensorflow as tf TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
TEST_URL = "http://download.tensorflow.org/data/iris_test.csv" CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth',
'PetalLength', 'PetalWidth', 'Species']
SPECIES = ['Setosa', 'Versicolor', 'Virginica'] def maybe_download():
# train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-], TRAIN_URL)
# test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-], TEST_URL)
#
# return train_path, test_path
return 'iris_training.csv', 'iris_test.csv' def load_data(label_name='Species'):
train_path, test_path = maybe_download() """Parses the csv file in TRAIN_URL and TEST_URL.""" # Create a local copy of the training set.
# train_path = tf.keras.utils.get_file(fname=TRAIN_URL.split('/')[-],
# origin=TRAIN_URL)
# train_path now holds the pathname: ~/.keras/datasets/iris_training.csv # Parse the local CSV file.
train = pd.read_csv(filepath_or_buffer=train_path,
names=CSV_COLUMN_NAMES, # list of column names
header= # ignore the first row of the CSV file.
)
# train now holds a pandas DataFrame, which is data structure
# analogous to a table. # . Assign the DataFrame's labels (the right-most column) to train_label.
# . Delete (pop) the labels from the DataFrame.
# . Assign the remainder of the DataFrame to train_features # label_name = y_name
train_features, train_label = train, train.pop(label_name) # Apply the preceding logic to the test set.
# test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-], TEST_URL)
test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=)
test_features, test_label = test, test.pop(label_name) # Return four DataFrames.
return (train_features, train_label), (test_features, test_label) def train_input_fn(features, labels, batch_size):
"""An input function for training"""
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels)) # Shuffle, repeat, and batch the examples.
dataset = dataset.shuffle().repeat().batch(batch_size) # Return the dataset.
return dataset def eval_input_fn(features, labels, batch_size):
"""An input function for evaluation or prediction"""
features = dict(features)
if labels is None:
# No labels, use only features.
inputs = features
else:
inputs = (features, labels) # Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples
assert batch_size is not None, "batch_size must not be None"
dataset = dataset.batch(batch_size) # Return the dataset.
return dataset # The remainder of this file contains a simple example of a csv parser,
# implemented using a the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in
# the `record_defaults` argument.
CSV_TYPES = [[0.0], [0.0], [0.0], [0.0], []] def _parse_line(line):
# Decode the line into its fields
fields = tf.decode_csv(line, record_defaults=CSV_TYPES) # Pack the result into a dictionary
features = dict(zip(CSV_COLUMN_NAMES, fields)) # Separate the label from the features
label = features.pop('Species') return features, label def csv_input_fn(csv_path, batch_size):
# Create a dataset containing the text lines.
dataset = tf.data.TextLineDataset(csv_path).skip() # Parse each line.
dataset = dataset.map(_parse_line) # Shuffle, repeat, and batch the examples.
dataset = dataset.shuffle().repeat().batch(batch_size) # Return the dataset.
return dataset
#  Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An Example of a DNNClassifier for the Iris dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import argparse
import tensorflow as tf import iris_data_mystudy parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--train_steps', default=1000, type=int,
help='number of training steps') (train_x, train_y), (test_x, test_y) = iris_data_mystudy.load_data() import os def main(argv):
args = parser.parse_args(argv[1:]) # Fetch the data
(train_x, train_y), (test_x, test_y) = iris_data_mystudy.load_data() my_feature_columns, predict_x = [], {}
for key in train_x.keys():
my_feature_columns.append(tf.feature_column.numeric_column(key=key))
predict_x[key] = [float(i) for i in test_x[key].values]
expected = ['' for i in predict_x[key]] # Build 2 hidden layer DNN with 10, 10 units respectively.
classifier = tf.estimator.DNNClassifier(
feature_columns=my_feature_columns,
# Two hidden layers of 10 nodes each.
hidden_units=[10, 10],
# The model must choose between 3 classes.
n_classes=3) # Train the Model.
classifier.train(
input_fn=lambda: iris_data_mystudy.train_input_fn(train_x, train_y,
args.batch_size),
steps=args.train_steps) # Evaluate the model.
eval_result = classifier.evaluate(
input_fn=lambda: iris_data_mystudy.eval_input_fn(test_x, test_y,
args.batch_size)) print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result)) predictions = classifier.predict(
input_fn=lambda: iris_data_mystudy.eval_input_fn(predict_x,
labels=None,
batch_size=args.batch_size)) template = ('\nmyProgress{}/{}ORI{}||RESULT{}|| Prediction is "{}" ({:.1f}%), expected "{}"') c, c_all_ = 0, len(expected)
for pred_dict, expec in zip(predictions, expected):
class_id = pred_dict['class_ids'][0]
probability = pred_dict['probabilities'][class_id]
ori = ','.join([str(predict_x[k][c]) for k in predict_x])
print(template.format(c, c_all_, ori, str(pred_dict), iris_data_mystudy.SPECIES[class_id],
100 * probability, expec))
c += 1 if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main)

  

C:\Users\Public\py36\python.exe C:/Users/sas/PycharmProjects/py_win_to_unix/sci/iris/premade_estimator_mywholedata.py
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: D:\MYTMPH~\tmpx25o9607
INFO:tensorflow:Using config: {'_model_dir': 'D:\\MYTMPH~1\\tmpx25o9607', '_tf_random_seed': None, '_save_summary_steps': , '_save_checkpoints_steps': None, '_save_checkpoints_secs': , '_session_config': None, '_keep_checkpoint_max': , '_keep_checkpoint_every_n_hours': , '_log_step_count_steps': , '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x000002765C0B2A20>, '_task_type': 'worker', '_task_id': , '_global_id_in_cluster': , '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': , '_num_worker_replicas': }
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
-- ::00.872812: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Saving checkpoints for into D:\MYTMPH~\tmpx25o9607\model.ckpt.
INFO:tensorflow:loss = 234.66115, step =
INFO:tensorflow:global_step/sec: 660.215
INFO:tensorflow:loss = 17.675238, step = (0.151 sec)
INFO:tensorflow:global_step/sec: 942.801
INFO:tensorflow:loss = 11.180588, step = (0.106 sec)
INFO:tensorflow:global_step/sec: 1299.09
INFO:tensorflow:loss = 7.819012, step = (0.076 sec)
INFO:tensorflow:global_step/sec: 1279.31
INFO:tensorflow:loss = 8.395781, step = (0.079 sec)
INFO:tensorflow:global_step/sec: 1120.52
INFO:tensorflow:loss = 12.372395, step = (0.089 sec)
INFO:tensorflow:global_step/sec: 1178.67
INFO:tensorflow:loss = 7.282875, step = (0.084 sec)
INFO:tensorflow:global_step/sec: 1218.92
INFO:tensorflow:loss = 8.7485, step = (0.082 sec)
INFO:tensorflow:global_step/sec: 968.145
INFO:tensorflow:loss = 3.7724056, step = (0.104 sec)
INFO:tensorflow:global_step/sec: 934.229
INFO:tensorflow:loss = 3.3475294, step = (0.107 sec)
INFO:tensorflow:Saving checkpoints for into D:\MYTMPH~\tmpx25o9607\model.ckpt.
INFO:tensorflow:Loss for final step: 5.2043657.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at ---::
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from D:\MYTMPH~\tmpx25o9607\model.ckpt-
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Finished evaluation at ---::
INFO:tensorflow:Saving dict for global step : accuracy = 1.0, average_loss = 0.04594822, global_step = , loss = 1.3784466 Test set accuracy: 1.000 INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from D:\MYTMPH~\tmpx25o9607\model.ckpt-
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op. myProgress0/30ORI5.,3.0,4.2,1.5||RESULT{'logits': array([-4.073111 , 3.3400419, -3.450334 ], dtype=float32), 'probabilities': array([6.0222525e-04, 9.9827516e-01, 1.1226065e-03], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.8%), expected "" myProgress1/30ORI6.,3.1,5.4,2.1||RESULT{'logits': array([-8.557374 , 0.5901505, 3.692759 ], dtype=float32), 'probabilities': array([4.5787260e-06, 4.2999577e-02, 9.5699579e-01], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Virginica" (95.7%), expected "" myProgress2/30ORI5.,3.3,1.7,0.5||RESULT{'logits': array([ 15.67865 , 9.518664, -17.122147], dtype=float32), 'probabilities': array([9.9789220e-01, 2.1078316e-03, 5.6738612e-15], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Setosa" (99.8%), expected "" myProgress3/30ORI6.,3.4,4.5,1.6||RESULT{'logits': array([-4.488565 , 2.8848784, -2.4938211], dtype=float32), 'probabilities': array([6.244299e-04, 9.947857e-01, 4.589761e-03], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.5%), expected "" myProgress4/30ORI5.,2.5,4.0,1.3||RESULT{'logits': array([-4.125968 , 2.9445832, -2.7388015], dtype=float32), 'probabilities': array([8.4616721e-04, 9.9576628e-01, 3.3876204e-03], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.6%), expected "" myProgress5/30ORI6.,2.9,4.3,1.3||RESULT{'logits': array([-3.5961967, 4.0570755, -4.9506564], dtype=float32), 'probabilities': array([4.7420594e-04, 9.9940348e-01, 1.2238618e-04], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.9%), expected "" myProgress6/30ORI5.,4.2,1.4,0.2||RESULT{'logits': array([ 21.595142, 11.861579, -21.650354], dtype=float32), 'probabilities': array([9.9994075e-01, 5.9257236e-05, 1.6545992e-19], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Setosa" (100.0%), expected "" myProgress7/30ORI6.,2.8,5.1,1.5||RESULT{'logits': array([-6.8899775, 1.2537876, 1.5890163], dtype=float32), 'probabilities': array([1.2113204e-04, 4.1691846e-01, 5.8296043e-01], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Virginica" (58.3%), expected "" myProgress8/30ORI5.,3.0,4.1,1.3||RESULT{'logits': array([-3.3489664, 3.5279539, -4.189754 ], dtype=float32), 'probabilities': array([1.0297953e-03, 9.9852604e-01, 4.4422352e-04], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.9%), expected "" myProgress9/30ORI6.,2.5,5.8,1.8||RESULT{'logits': array([-9.557738 , -0.5458323, 6.196618 ], dtype=float32), 'probabilities': array([1.4370033e-07, 1.1783625e-03, 9.9882144e-01], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Virginica" (99.9%), expected "" myProgress10/30ORI7.,3.0,5.9,2.1||RESULT{'logits': array([-9.772497 , -0.28590763, 5.876704 ], dtype=float32), 'probabilities': array([1.5948658e-07, 2.1023140e-03, 9.9789751e-01], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Virginica" (99.8%), expected "" myProgress11/30ORI4.,3.0,1.1,0.1||RESULT{'logits': array([ 17.55983 , 9.681561, -17.754019], dtype=float32), 'probabilities': array([9.9962127e-01, 3.7874514e-04, 4.6049518e-16], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Setosa" (100.0%), expected "" myProgress12/30ORI5.,2.8,4.9,2.0||RESULT{'logits': array([-7.803207 , -0.3124646, 4.896084 ], dtype=float32), 'probabilities': array([3.0366703e-06, 5.4398365e-03, 9.9455714e-01], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Virginica" (99.5%), expected "" myProgress13/30ORI5.,2.3,4.0,1.3||RESULT{'logits': array([-4.5208964, 2.6824176, -2.0642245], dtype=float32), 'probabilities': array([7.3716807e-04, 9.9066305e-01, 8.5997432e-03], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.1%), expected "" myProgress14/30ORI6.,2.2,4.0,1.0||RESULT{'logits': array([-3.103953 , 4.2947545, -5.656597 ], dtype=float32), 'probabilities': array([6.1163987e-04, 9.9934071e-01, 4.7631765e-05], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.9%), expected "" myProgress15/30ORI5.,3.5,1.4,0.2||RESULT{'logits': array([ 19.246971, 10.753842, -19.625887], dtype=float32), 'probabilities': array([9.9979514e-01, 2.0482930e-04, 1.3111250e-17], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Setosa" (100.0%), expected "" myProgress16/30ORI5.,2.6,3.5,1.0||RESULT{'logits': array([ 0.12415126, 5.1074505 , -7.748658 ], dtype=float32), 'probabilities': array([6.8047806e-03, 9.9319261e-01, 2.5923666e-06], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.3%), expected "" myProgress17/30ORI4.,3.4,1.9,0.2||RESULT{'logits': array([ 14.914921, 9.332862, -16.685436], dtype=float32), 'probabilities': array([9.9624938e-01, 3.7506856e-03, 1.8815136e-14], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Setosa" (99.6%), expected "" myProgress18/30ORI5.,3.4,1.5,0.2||RESULT{'logits': array([ 18.556929, 10.536166, -19.18138 ], dtype=float32), 'probabilities': array([9.996716e-01, 3.284615e-04, 4.076791e-17], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Setosa" (100.0%), expected "" myProgress19/30ORI5.,2.5,5.0,2.0||RESULT{'logits': array([-8.281928 , -0.5296105, 5.5087314], dtype=float32), 'probabilities': array([1.0227221e-06, 2.3798312e-03, 9.9761909e-01], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Virginica" (99.8%), expected "" myProgress20/30ORI5.,3.4,1.7,0.2||RESULT{'logits': array([ 18.629036, 10.756583, -19.529491], dtype=float32), 'probabilities': array([9.9961901e-01, 3.8095328e-04, 2.6779140e-17], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Setosa" (100.0%), expected "" myProgress21/30ORI5.,3.0,4.5,1.5||RESULT{'logits': array([-5.327266 , 1.7238306 , -0.07224458], dtype=float32), 'probabilities': array([7.4258365e-04, 8.5703361e-01, 1.4222382e-01], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (85.7%), expected "" myProgress22/30ORI6.,2.9,5.6,1.8||RESULT{'logits': array([-8.589258 , -0.3179294, 5.2680035], dtype=float32), 'probabilities': array([9.5552411e-07, 3.7362350e-03, 9.9626285e-01], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Virginica" (99.6%), expected "" myProgress23/30ORI6.,2.5,4.9,1.5||RESULT{'logits': array([-6.850107 , 1.4749087, 1.2317538], dtype=float32), 'probabilities': array([1.3583169e-04, 5.6041485e-01, 4.3944934e-01], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (56.0%), expected "" myProgress24/30ORI5.,2.7,3.9,1.2||RESULT{'logits': array([-2.8687124, 4.1638584, -5.565254 ], dtype=float32), 'probabilities': array([8.818289e-04, 9.990588e-01, 5.946907e-05], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.9%), expected "" myProgress25/30ORI6.,3.0,4.6,1.4||RESULT{'logits': array([-4.7632866, 2.8746686, -2.311274 ], dtype=float32), 'probabilities': array([4.7890263e-04, 9.9396026e-01, 5.5608703e-03], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.4%), expected "" myProgress26/30ORI5.,4.1,1.5,0.1||RESULT{'logits': array([ 20.011753, 11.262881, -20.466146], dtype=float32), 'probabilities': array([9.9984133e-01, 1.5861503e-04, 2.6339257e-18], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Setosa" (100.0%), expected "" myProgress27/30ORI6.,3.1,4.7,1.5||RESULT{'logits': array([-4.609805 , 3.8163486, -3.9574132], dtype=float32), 'probabilities': array([2.1892253e-04, 9.9936074e-01, 4.2035911e-04], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (99.9%), expected "" myProgress28/30ORI6.,3.3,5.7,2.5||RESULT{'logits': array([-9.505449 , -0.5826268, 6.30414 ], dtype=float32), 'probabilities': array([1.3600010e-07, 1.0201682e-03, 9.9897963e-01], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Virginica" (99.9%), expected "" myProgress29/30ORI6.,2.9,4.3,1.3||RESULT{'logits': array([-3.4441397, 4.3723693, -5.5904927], dtype=float32), 'probabilities': array([4.0284474e-04, 9.9955004e-01, 4.7096488e-05], dtype=float32), 'class_ids': array([], dtype=int64), 'classes': array([b''], dtype=object)}|| Prediction is "Versicolor" (100.0%), expected "" Process finished with exit code

  

DNNClassifier 深度神经网络 分类器的更多相关文章

  1. Batch Normalization原理及其TensorFlow实现——为了减少深度神经网络中的internal covariate shift,论文中提出了Batch Normalization算法,首先是对”每一层“的输入做一个Batch Normalization 变换

    批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanish ...

  2. 深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用

    深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能 ...

  3. BP神经网络分类器的设计

    1.BP神经网络训练过程论述 BP网络结构有3层:输入层.隐含层.输出层,如图1所示. 图1 三层BP网络结构 3层BP神经网络学习训练过程主要由4部分组成:输入模式顺传播(输入模式由输入层经隐含层向 ...

  4. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  5. TensorFlow 深度学习笔记 TensorFlow实现与优化深度神经网络

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全 ...

  6. TensorFlow实现与优化深度神经网络

    TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...

  7. 如何用70行Java代码实现深度神经网络算法

    http://www.tuicool.com/articles/MfYjQfV 如何用70行Java代码实现深度神经网络算法 时间 2016-02-18 10:46:17  ITeye 原文  htt ...

  8. 深度神经网络(DNN)模型与前向传播算法

    深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结. 1. 从感知机 ...

  9. 深度神经网络(DNN)反向传播算法(BP)

    在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...

随机推荐

  1. vue中去掉烦人的格式警告(eslint )

    解决办法: 一,源头上解决,下次创建项目时就不要使用eslint连接项目代码 如上图所示,就是在这一步的时候选择no: 二,在build文件夹中找到webpack.base.conf.js文件 找到右 ...

  2. LNMP构架搭建论坛

    1 yum install -y apr* autoconf automake bison bzip2 bzip2* compat* cpp curl curl-devel fontconfig fo ...

  3. RNN与情感分类问题实战-加载IMDB数据集

    目录 Sentiment Analysis Two approaches Single layer Multi-layers Sentiment Analysis Two approaches Sim ...

  4. 嵌入式linux启动信息完全注释

    嵌入式linux启动信息完全注释 from:http://www.embedlinux.cn/ShowPost.asp?ThreadID=377 摘要 我们在这里讨论的是对嵌入式linux系统的启动过 ...

  5. <c:foreach> 标签获取循环次数

    <c:forEach var="i" begin="1" end="9" varStatus="status"&g ...

  6. BNUOJ 1541 Air Raid

    Air Raid Time Limit: 1000ms Memory Limit: 10000KB This problem will be judged on PKU. Original ID: 1 ...

  7. AndroidSweetSheet:从底部弹出面板(1)

     AndroidSweetSheet:从底部弹出面板(1) AndroidSweetSheet又是一个从底部弹出面板的开源项目.我在以前写的文章中介绍了不少这些项目,见附录文章5,6,7,8.现在 ...

  8. JVM 总结

    面试 java 虚拟机 jvm 基础 jvm Write Once Run EveryWhere >jar 包可以在任何兼容jvm上运行 >jvm 适配器 屏蔽掉底层差异 >内存管理 ...

  9. UVa 12563_Jin Ge Jin Qu hao

    [题意]在KTV唱歌,假设每首歌最长180s,时间结束时如果还有歌正在唱,则将此歌唱完.为使唱歌时间最长,规定最后唱长达678s的<劲歌金曲>[介是个嘛?] 假设你正在唱KTV,在剩余的t ...

  10. ibatis的初识

    在工作中,服务端的框架基本上是struts+spring+ibatis+velocity.ibatis曾经没有接触到,而曾经使用的hibernate在公司居然没碰着.同样都是数据库封装,为什么没有选择 ...