Candy Distribution

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 544    Accepted Submission(s): 214

 

Problem Description
WY has n kind of candy, number 1-N, The i-th kind of candy has ai. WY would like to give some of the candy to his teammate Ecry and lasten. To be fair, he hopes that Ecry’s candies are as many as lasten's in the end. How many kinds of methods are there?

Input
The first line contains an integer T<=11 which is the number of test cases.
Then T cases follow. Each case contains two lines. The first line contains one integer n(1<=n<=200). The second line contains n integers ai(1<=ai<=200)

Output
For each test case, output a single integer (the number of ways that WY can distribute candies to his teammates, modulo 109+7 ) in a single line.

Sample Input
2 1 2 2 1 2

Sample Output
2 4
Hint
Sample: a total of 4, (1) Ecry and lasten are not assigned to the candy; (2) Ecry and lasten each to a second kind of candy; (3) Ecry points to one of the first kind of candy, lasten points to a second type of candy; (4) Ecry points to a second type of candy, lasten points to one of the first kind of candy.

Author
FZUACM

Source
2015 Multi-University Training Contest 1

解题:动态规划+规律优化
 
  1. $定义dp[i]表示两人之间相差i个糖果的情况数$
  2. 当前有a个第i种糖果,那么我们有\[dp[j] = dp[j]\times (a/2 + 1) + dp[j-1]\times((a-1)/2+1)+dp[j+1]\times((a-1)/2+1)+\cdots + dp[j-a]\times ((a-a)/2 + 1) + dp[j+a]\times ((a-a)/2 + 1)\]
  3. $可以发现算出*dp[0]之后,算*dp[1]  = *dp[0] + dp[1] + dp[3] - dp[0] - dp[-2]$
  4. $此时只要把[j+1,j+1+a]的奇数位置的dp值加起来 - [j-a,j]偶数位置的dp值 + *dp[0] = *dp[1]$
 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = ;
const LL mod = ;
LL dp[maxn],sum[][maxn];
int bound[maxn],n;
int main(){
int kase;
scanf("%d",&kase);
while(kase--){
scanf("%d",&n);
int S = ;
for(int i = ; i <= n; ++i){
scanf("%d",bound + i);
S += bound[i];
}
if(S&) S |= ;
memset(dp,,sizeof dp);
memset(sum,,sizeof sum);
dp[S] = ;
for(int i = ,t = (S<<); i <= n; ++i){
sum[][] = dp[];
sum[][] = ;
for(int j = ; j <= t; ++j){
sum[][j] = sum[][j-];
sum[][j] = sum[][j-];
sum[j&][j] += dp[j];
sum[j&][j] %= mod;
}
LL ret = ;
for(int j = ; j <= bound[i]; ++j){
ret += (LL)dp[j]*(((bound[i] - j)>>) + );
ret %= mod;
}
for(int j = ,p = (bound[i]&^); j <= t; ++j){
dp[j] = ret;
int x = max(,j - bound[i] - );
ret += (sum[p][j + bound[i] + ] - sum[p][j]);
p ^= ;
ret -= sum[p][j] - sum[p][x];
ret %= mod;
}
}
printf("%I64d\n",(dp[S] + mod)%mod);
}
return ;
}

参考这位大大的博客

$dp[j-1]\times((a-1)/2+1)$就是表示先取第i种的一个给自己,剩下的两人均分,

但是,我们不一定要全部分,所以那个1就是表示剩下的不分了,为什么乘以$(a-1)/2$,因为两个人可以都分1,都分2,都分$(a-1)/2$,共$(a-1)/2$种

HDU 5291 Candy Distribution的更多相关文章

  1. HDU 5291 Candy Distribution DP 差分 前缀和优化

    Candy Distribution 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5291 Description WY has n kind of ...

  2. HDU 5291(Candy Distribution-差值dp)

    Candy Distribution Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  3. AGC027 A - Candy Distribution Again

    目录 题目链接 题解 代码 题目链接 AGC027 A - Candy Distribution Again 题解 贪心即可 代码 #include<cstdio> #include< ...

  4. Hdu 4465 Candy (快速排列组合+概率)

    题目链接: Hdu 4465 Candy 题目描述: 有两个箱子,每个箱子有n颗糖果,抽中第一个箱子的概率为p,抽中另一个箱子的概率为1-p.每次选择一个箱子,有糖果就拿走一颗,没有就换另外一个箱子. ...

  5. HDU 4780 Candy Factory

    Candy Factory Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ...

  6. Candy Distribution

    Kids like candies, so much that they start beating each other if the candies are not fairly distribu ...

  7. hdu 1034 Candy Sharing Game

    Candy Sharing Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  8. hdu 4465 Candy(二次项概率)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4465 参考博客:http://www.cnblogs.com/goagain/archive/2012 ...

  9. hdu 4465 Candy(2012 ACM-ICPC 成都现场赛)

    简单概率题,可以直接由剩余n个递推到剩余0个.现在考虑剩余x个概率为(1-p)的candy时,概率为C(2 * n - x, x) * pow(p, n + 1)  *pow(1 - p, n - x ...

随机推荐

  1. 聪明的质监员 2011年NOIP全国联赛提高组(二分+前缀和)

    聪明的质监员 2011年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 小 T 是一名质量监督员, ...

  2. Linux上安装禅道

    linux一键安装包内置了apache, php, mysql这些应用程序,只需要下载解压缩即可运行禅道. 从7.3版本开始,linux一键安装包分为32位和64位两个包,请大家根据操作系统的情况下载 ...

  3. 2017杭电多校第七场1005Euler theorem

    Euler theorem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) ...

  4. 在idea中为类和方法自动生成注释

    https://my.oschina.net/mojiayi/blog/1608746

  5. Objective-C设计模式——适配器Adapter(接口适配)

    适配器模式 适配器模式通俗来讲,其实就是对客户端添加新的类但却不修改客户端和新的类的接口.此时我们需要自己来实现适配,在适配器模式中有Target对象,即客户端所需要的接口对象,Adaptee对象,即 ...

  6. Laravel5.1学习笔记21 EloquentORM 集合

    Eloquent: Collections Introduction Available Methods Custom Collections Introduction All multi-resul ...

  7. 树莓派连接arduino(USB串口通讯)

    2018-06-0115:12:19 https://blog.csdn.net/song527730241/article/details/50884890 重要步骤  查看端口:(ttyUSB0或 ...

  8. Ps 快捷键全解

    一.工具箱(多种工具共用一个快捷键的可同时按[Shift]加此快捷键选取)矩形.椭圆选框工具 [M]移动工具 [V]套索.多边形套索.磁性套索 [L]魔棒工具 [W]裁剪工具 [C]切片工具.切片选择 ...

  9. Java 基础入门随笔(8) JavaSE版——静态static

    面向对象(2) this:代表对象.代表哪个对象呢?当前对象. 当成员变量和局部变量重名,可以用关键字this来区分. this就是所在函数所属对象的引用.(简单说:哪个对象调用了this所在的函数, ...

  10. C语言中结构体大小计算

    1.普通结构体 struct student { char sex; char a; char b; int age; char name[100]; }; 该结构体大小为108 解答:1.先算str ...