UVA Recurrences 矩阵相乘+快速幂
题目大意:
f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d),已给递推公式,求f(n)的大小。
解题思路:
n很大,所以我们就要构造矩阵,运用矩阵快速幂来求解。//题目描述上口口声声说int范围内,但是大家一定不要天真!!!!!!
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
using namespace std; #define LL long long
const int maxn = ;
LL d, m;
struct mat
{
LL p[maxn][maxn];
}; mat mul (mat a, mat b);
mat pow (LL n, mat a, mat b); int main ()
{
LL n;
mat a, b; while (scanf ("%lld %lld %lld", &d, &n, &m), n+m+d)
{
memset (a.p, , sizeof(a.p));
memset (b.p, , sizeof(b.p)); for (int i=; i<d; i++)//构造矩阵
{
scanf ("%lld", &a.p[i][]);
a.p[i][] %= m;
a.p[i][i+] = ;
}
for (int i=; i<d; i++)//这个矩阵要反过来输入!!!!!!
{
scanf ("%lld", &b.p[][d-i-]);
b.p[][i] %= m;
} if (d < n)
{
b = pow (n-d, a, b);
printf ("%lld\n", b.p[][]);
}
else
printf ("%lld\n", b.p[][d-n]);
}
return ;
} mat mul (mat a, mat b)
{
mat c;
memset (c.p, , sizeof(c.p));
for (int i=; i<d; i++)
for (int j=; j<d; j++)
{
for (int k=; k<d; k++)
c.p[i][j] = (c.p[i][j] + a.p[i][k] * b.p[k][j]) % m;
}
return c;
}
mat pow (LL n, mat a, mat b)
{
while (n)
{
if (n % )
b = mul (b, a);
a = mul (a, a);
n /= ;
}
return b;
}
UVA Recurrences 矩阵相乘+快速幂的更多相关文章
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如 ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- hdu 5607 graph (矩阵乘法快速幂)
考虑一个经典的问题: 询问从某个点出发,走 k 步到达其它各点的方案数? 这个问题可以转化为矩阵相乘,所以矩阵快速幂即可解决. 本题思路: 矩阵经典问题:求从i点走k步后到达j点的方案数(mod p) ...
- 矩阵二分快速幂优化dp动态规划
矩阵快速幂代码: int n; // 所有矩阵都是 n * n 的矩阵 struct matrix { int a[100][100]; }; matrix matrix_mul(matrix A, ...
- 【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2745 Solved: 1694[Submit][Statu ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
随机推荐
- Design Pattern Visitor 訪问者设计模式
訪问者设计模式是已经有了一组Person对象了,然后不同的訪问者訪问这组对象.会有不同效果. 这些訪问者实际上就是一个能够让Person对象组运行的动作行为等. 至于这些Person对象是怎样运行这些 ...
- 【转】ubuntu 下安装mongodb php 拓展的方法
按照上面的方法安装成功之后,写一个 mongodb 的php测试脚本,用来测试是否可以 正确连接上mongodb ,并查询结果. 参考:http://php.net/manual/en/class.m ...
- 【转】AOP
原文:http://blog.csdn.net/zhoudaxia/article/details/38502347 .---------------------------------------- ...
- 从程序员角度看ELF | Linux-Programming (转)
★概要: 这片文档从程序员的角度讨论了linux的ELF二进制格式.介绍了一些ELF执行 文件在运行控制的技术.展示了如何使用动态连接器和如何动态装载ELF. 我们也演示了如何在LINUX使用GNU ...
- Spring中注解
@Autowired :spring注解 @Resource :J2EE注解 @Transactional(rollbackFor=Exception.class):指定回滚 @RequestMapp ...
- 安全相关的head头
与安全相关的head头包括 参考网站:https://developer.mozilla.org/en-US/docs/Web/HTTP Content-Security-Policy(CSP):禁止 ...
- spring的PROPAGATION_REQUIRES_NEW事务,下列说法正确的是(D)
A:内部事务回滚会导致外部事务回滚 B:内部事务回滚了,外部事务仍可以提交 C:外部事务回滚了,内部事务也跟着回滚 D:外部事务回滚了,内部事务仍可以提交 PROPAGATION_REQUIRES_N ...
- 不同节点 IP 时间同步 分布式时间同步系统的参考时间获取技术分析
linux linux下时间同步的两种方法分享_LINUX_操作系统_脚本之家 http://www.jb51.net/LINUXjishu/73979.html 分布式时间同步系统的参考时间获取技术 ...
- ORA-09817
连接数据库的时候报:ORA-09817:write to audit file,在网上搜索了下,发现时oracle安装目录下面的磁盘空间不够,有不少人给出了解决办法,下面即是一例: 连接oracle ...
- div+css通用兼容性代码整理
一.Div+css通用兼容性代码 你可以在css开头加入 *html{padding:0px} <style> *html{padding:0px} /* Clear Fix */ .cl ...