DP(DAG) UVA 437 The Tower of Babylon
题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高
分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, z的砖头,如果i能叠在j上,那么g[i][j] = true,转换成DAG问题,dp[i]表示第i块叠在最上部最高的高度
收获:转换成经典模型
代码:
/************************************************
* Author :Running_Time
* Created Time :2015-8-28 18:00:01
* File Name :UVA_437.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e2 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
struct Block {
int x, y, z;
}b[N];
bool g[N][N];
int dp[N];
int n; int DFS(int u) {
if (dp[u] != -1) return dp[u];
dp[u] = b[u].z;
for (int i=1; i<=n; ++i) {
if (g[u][i]) {
dp[u] = max (dp[u], DFS (i) + b[u].z);
}
}
return dp[u];
} bool check(int i, int j) {
if (b[i].x < b[j].x && b[i].y < b[j].y) return true;
if (b[i].x < b[j].y && b[i].y < b[j].x) return true;
return false;
} int main(void) {
int cas = 0;
while (scanf ("%d", &n) == 1) {
if (n == 0) break;
for (int i=1; i<=n; ++i) {
scanf ("%d%d%d", &b[i].x, &b[i].y, &b[i].z);
b[n+i].x = b[i].x, b[n+i].y = b[i].z, b[n+i].z = b[i].y;
b[2*n+i].x = b[i].y, b[2*n+i].y = b[i].z, b[2*n+i].z = b[i].x;
}
memset (g, false, sizeof (g));
n *= 3;
for (int i=1; i<=n; ++i) {
for (int j=i+1; j<=n; ++j) {
if (check (i, j)) g[i][j] = true;
if (check (j, i)) g[j][i] = true;
}
}
memset (dp, -1, sizeof (dp));
int ans = 0;
for (int i=1; i<=n; ++i) {
ans = max (ans, DFS (i));
}
printf ("Case %d: maximum height = %d\n", ++cas, ans);
} return 0;
}
DP(DAG) UVA 437 The Tower of Babylon的更多相关文章
- UVa 437 The Tower of Babylon(DP 最长条件子序列)
题意 给你n种长方体 每种都有无穷个 当一个长方体的长和宽都小于还有一个时 这个长方体能够放在还有一个上面 要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法 比較不好控制 ...
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- UVA 437 The Tower of Babylon(DAG上的动态规划)
题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...
- UVA 437 "The Tower of Babylon" (DAG上的动态规划)
传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...
- UVA - 437 The Tower of Babylon(dp-最长递增子序列)
每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...
- UVA 437 The Tower of Babylon巴比伦塔
题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...
- UVA 427 The Tower of Babylon 巴比伦塔(dp)
据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...
- UVA 437 十九 The Tower of Babylon
The Tower of Babylon Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Subm ...
随机推荐
- InfluxDB useful commands
InfluxDB 配置文件地址:/etc/influxdb/influxdb.conf 通过curl写数据 curl -i -XPOST 'http://localhost:8086/write?db ...
- 系统安全攻防战:DLL注入技术详解
DLL注入是一种允许攻击者在另一个进程的地址空间的上下文中运行任意代码的技术.攻击者使用DLL注入的过程中如果被赋予过多的运行特权,那么攻击者就很有可能会在DLL文件中嵌入自己的恶意攻击代码以获取更高 ...
- Delphi中匿名方法动态绑定事件
应恢弘之约,写了一个对其发布的匿名函数动态绑定到事件的封装,代码如下: type TAnonEvent=class public class function Wrap<T1,T2>(On ...
- 【Nginx】ngx_event_core_module事件模块
功能:创建连接池,决定使用哪些事件驱动机制,以及初始化将要使用的事件模块 该模块定义了ngx_event_core_commands数组处理其感兴趣的7个配置项 ngx_event_conf_t为该模 ...
- 【转】nginx 和 php-fpm 通信使用unix socket还是TCP,及其配置
原文: http://blog.csdn.net/pcyph/article/details/46513521 -------------------------------------------- ...
- Java入门 第一季第五章 编程练习解析
这是我学习慕课网Java课程的笔记.原视频链接为:http://www.imooc.com/learn/85 5-1 基本写法 自己主动补全快捷键:alt + / 5-2 输入输出 使用Scanner ...
- asp.net mvc 抓取京东商城分类
555 asp.net mvc 抓取京东商城分类 URL:http://www.jd.com/allSort.aspx 效果: //后台代码 public ActionResult Get ...
- Why Do Microservices Need an API Gateway?
Why Do Microservices Need an API Gateway? - DZone Integration https://dzone.com/articles/why-do-micr ...
- Dynamics CRM 修改Excel 最大导出记录限制及 最大上传文件限制
CRM默认的Excel最大导出记录是10000条,最大上传文件限制为5m. 这样的限制可以满足少量数据的批量更新,但是如果数据量比较大的话需要修改最大的导出记录限制,和上传文件的大小,网上有的是直接修 ...
- XMU 1608 nc与加法进位 【二分】
1608: nc与加法进位 Time Limit: 2000 MS Memory Limit: 128 MBSubmit: 29 Solved: 27[Submit][Status][Web Bo ...