DP(DAG) UVA 437 The Tower of Babylon
题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高
分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, z的砖头,如果i能叠在j上,那么g[i][j] = true,转换成DAG问题,dp[i]表示第i块叠在最上部最高的高度
收获:转换成经典模型
代码:
/************************************************
* Author :Running_Time
* Created Time :2015-8-28 18:00:01
* File Name :UVA_437.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e2 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
struct Block {
int x, y, z;
}b[N];
bool g[N][N];
int dp[N];
int n; int DFS(int u) {
if (dp[u] != -1) return dp[u];
dp[u] = b[u].z;
for (int i=1; i<=n; ++i) {
if (g[u][i]) {
dp[u] = max (dp[u], DFS (i) + b[u].z);
}
}
return dp[u];
} bool check(int i, int j) {
if (b[i].x < b[j].x && b[i].y < b[j].y) return true;
if (b[i].x < b[j].y && b[i].y < b[j].x) return true;
return false;
} int main(void) {
int cas = 0;
while (scanf ("%d", &n) == 1) {
if (n == 0) break;
for (int i=1; i<=n; ++i) {
scanf ("%d%d%d", &b[i].x, &b[i].y, &b[i].z);
b[n+i].x = b[i].x, b[n+i].y = b[i].z, b[n+i].z = b[i].y;
b[2*n+i].x = b[i].y, b[2*n+i].y = b[i].z, b[2*n+i].z = b[i].x;
}
memset (g, false, sizeof (g));
n *= 3;
for (int i=1; i<=n; ++i) {
for (int j=i+1; j<=n; ++j) {
if (check (i, j)) g[i][j] = true;
if (check (j, i)) g[j][i] = true;
}
}
memset (dp, -1, sizeof (dp));
int ans = 0;
for (int i=1; i<=n; ++i) {
ans = max (ans, DFS (i));
}
printf ("Case %d: maximum height = %d\n", ++cas, ans);
} return 0;
}
DP(DAG) UVA 437 The Tower of Babylon的更多相关文章
- UVa 437 The Tower of Babylon(DP 最长条件子序列)
题意 给你n种长方体 每种都有无穷个 当一个长方体的长和宽都小于还有一个时 这个长方体能够放在还有一个上面 要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法 比較不好控制 ...
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- UVA 437 The Tower of Babylon(DAG上的动态规划)
题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...
- UVA 437 "The Tower of Babylon" (DAG上的动态规划)
传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...
- UVA - 437 The Tower of Babylon(dp-最长递增子序列)
每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...
- UVA 437 The Tower of Babylon巴比伦塔
题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...
- UVA 427 The Tower of Babylon 巴比伦塔(dp)
据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...
- UVA 437 十九 The Tower of Babylon
The Tower of Babylon Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Subm ...
随机推荐
- 【转】c++内存管理学习纲要
http://blog.csdn.net/zhanghefu/article/details/5003407 转自:http://blog.csdn.net/wdzxl198/article/deta ...
- composer-安装laravel
laravel文档地址: https://docs.golaravel.com/docs/5.6/installation/ 我们怎么将Apache和PHP互联起来呢? http://www.cnbl ...
- Linux的基本优化
归结成口诀: 一清.一精.一增.两优.四设.七其他 一清: 定时清理日志/var/spool/clientsqueue 一精: 精简开机启动服务 一增: 增大文件描述符 两优: linux内核参数的优 ...
- notepad++ 查找引用(Find Reference)(适用于c c++及各类脚本比方lua、python等)
在程序开发过程中,程序猿经经常使用到的一个功能就是查找引用(Find Reference).Visual Studio里面的相应功能是"查找全部引用"(Find All Refer ...
- Spring中注解
@Autowired :spring注解 @Resource :J2EE注解 @Transactional(rollbackFor=Exception.class):指定回滚 @RequestMapp ...
- react-grid-layout
一个好用的拖拽.自适应布局 react 插件 基本使用: // 显示全部 chart 内容区域 import React,{PureComponent} from 'react'; import {R ...
- java实用技能 上传文件 等等
1.IOS AES对称加密,加密结果不同,问题解决 IOS http post请求,使用AFNetworing 框架,默认请求content-type为application/json ,所以无法使 ...
- sphinx测试数据生成
import json from random import sample, randint from uuid import uuid4 def gen_random_words(): with o ...
- Eclipse 插件管理
查看已安装的插件: [help]⇒ [About Eclipse]⇒ [Installed Softwares] 1. 常用插件 maven:安装步骤如下: [help]⇒ [Install new ...
- x86 linux 裁剪过程中能正常跑起来的必要配置项
A .选中Executable file formats/Emulations ---> Kernel support for ELFbinaries -----加载运行rootfs 中的程序. ...