For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:

val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|

(Assume that the sum of zero elements equals zero.)

For a given array A, we are looking for such a sequence S that minimizes val(A,S).

Write a function:

int solution(int A[], int N);

that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.

For example, given array:

A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2

your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.

Assume that:

  • N is an integer within the range [0..20,000];
  • each element of array A is an integer within the range [−100..100].

Complexity:

  • expected worst-case time complexity is O(N*max(abs(A))2);
  • expected worst-case space complexity is O(N+sum(abs(A))), beyond input storage (not counting the storage required for input arguments).

Elements of input arrays can be modified.

题目大意:给n个数,每个数的范围在-100到100之间,然后对于每个数,我们可以选着乘上-1或1,然后让你求出这些数的和的绝对值的最小值。

这题,可以转化成背包问题。

很明显,我们对这些数求和得sum ,用多重背包求得接近<=sum/2的最大值ans,那么sum-ans-ans就是结果了....这里不好语言描述,不过想一想还是很正确的.

把多重背包转换成01背包求。时间复杂度:O(V*Σlog n[i])  这里的V=sum/2

// you can use includes, for example:
// #include <algorithm> // you can write to stdout for debugging purposes, e.g.
// cout << "this is a debug message" << endl;
int dp[];
int V;
inline void dp1(int cost,int weight){
for(int v=V;v>=cost;v--)
dp[v]=max(dp[v],dp[v-cost]+weight);
}
inline void dp2(int cost,int weight){
for(int v=cost;v<=V;v++){
dp[v]=max(dp[v],dp[v-cost]+weight);
}
}
inline void dp3(int cost,int weight,int num){
if(cost*num>=V){
dp2(cost,weight);
return ;
}
int k=;
while(k<num){
dp1(k*cost,k*weight);
num-=k;
k*=;
}
dp1(num*cost,num*weight);
}
int cnt[];
int solution(vector<int> &A) {
// write your code in C++11 (g++ 4.8.2)
int n=A.size();
int sum,m;
sum=m=;
dp[]=;
for(int i=;i<n;i++){
int x=(A[i]>=)?A[i]:(-A[i]);
sum+=x;
cnt[x]++;
if(x>m)m=x;
}
if(m==)return ;
V=(sum>>);
for(int i=;i<=m;i++){
if(cnt[i])dp3(i,i,cnt[i]);
}
return (sum-(dp[V]<<)); }

more about 多重背包:http://love-oriented.com/pack/P03.html

codility MinAbsSum的更多相关文章

  1. [codility]Min-abs-sum

    https://codility.com/demo/take-sample-test/delta2011/ 0-1背包问题的应用.我自己一开始没想出来.“首先对数组做处理,负数转换成对应正数,零去掉, ...

  2. Codility NumberSolitaire Solution

    1.题目: A game for one player is played on a board consisting of N consecutive squares, numbered from ...

  3. codility flags solution

    How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...

  4. GenomicRangeQuery /codility/ preFix sums

    首先上题目: A DNA sequence can be represented as a string consisting of the letters A, C, G and T, which ...

  5. *[codility]Peaks

    https://codility.com/demo/take-sample-test/peaks http://blog.csdn.net/caopengcs/article/details/1749 ...

  6. *[codility]Country network

    https://codility.com/programmers/challenges/fluorum2014 http://www.51nod.com/onlineJudge/questionCod ...

  7. *[codility]AscendingPaths

    https://codility.com/programmers/challenges/magnesium2014 图形上的DP,先按照路径长度排序,然后依次遍历,状态是使用到当前路径为止的情况:每个 ...

  8. *[codility]MaxDoubleSliceSum

    https://codility.com/demo/take-sample-test/max_double_slice_sum 两个最大子段和相拼接,从前和从后都扫一遍.注意其中一段可以为0.还有最后 ...

  9. *[codility]Fish

    https://codility.com/demo/take-sample-test/fish 一开始习惯性使用单调栈,后来发现一个普通栈就可以了. #include <stack> us ...

随机推荐

  1. SQlite数据库框架:LitePal

    常用的数据库框架Android的发展的速度是难以置信的,Android出来哪一年我还在小学上学很,还能很清楚的记得,那年一切,但是那个时候的我怎么可能也不会想到自己将来会要去做Android.Andr ...

  2. Python学习笔记(1)对象类型

    强制转换字符串函数str 如果我们求2的一百万次方是多少那么我们可以 print(2**1000000) 如果我们要求2的一百万次方有多少位那么我们可以用str函数强制转换成字符串然后len函数计算 ...

  3. Python学习笔记之生成器、迭代器和装饰器

    这篇文章主要介绍 Python 中几个常用的高级特性,用好这几个特性可以让自己的代码更加 Pythonnic 哦 1.生成器 什么是生成器呢?简单来说,在 Python 中一边循环一边计算的机制称为 ...

  4. selenium下拉滚动条

    selenium下拉滚动条 制作人:全心全意 谷歌浏览器下拉滚动条 chrome = webdriver.Chrome() //创建谷歌浏览器对象 url="http://www.baidu ...

  5. 58.海量bucket优化机制:从深度优先到广度优先

    当buckets数量特别多的时候,深度优先和广度优先的原理,图解 假如我们有如下数据数据:每个演员的每个电影的评论. 现在我们的需求是找到前10名的演员所演的电影的评论.这是一个两层聚合题.     ...

  6. textarea 高度调整

    textarea 高度调整 通过 rows 属性调整 高度

  7. HDU 5291 Candy Distribution

    Candy Distribution Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  8. HDU - 3407 - String-Matching Automata

    先上题目: String-Matching Automata Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  9. POJ 1523 SPF 割点 Tarjan

    SPF Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9317   Accepted: 4218 Description C ...

  10. ECMAScript 6 入门学习笔记(零)——开始

    所有es6笔记都是我自己提出来的一些点,没有很详细的例子什么的,这个链接就是我看的教程,有需要的可以看看.(http://es6.ruanyifeng.com/#docs/intro) 1.ECMAS ...