题目大意

有\(n\)(\(n\leq 10^9\))个数:\(1,2,...,n\),每次操作是随机取一个没被删除的数\(x\),并删去\(x,x^2,x^3,...\)。

求期望几次删完所有数。

题解

可以把问题转换成:有\(n\)个数,每次操作随机取一个数\(x\),若\(x\)未被标记则标记\(x,x^2,x^3,...\)并删去\(x\),反之则删去\(x\),求期望删多少个未被标记的数。

发现一个数\(x\)被计入答案的充要条件是\(\forall y\in\{1,2,3,...,n\}\)满足\(\exists k,y^k=x\),删除序列中\(y\)在\(x\)之后。

记\(y\)的个数为\(p\),问题变成有\(p+1\)个数的排列,指定的数在第一个的概率。这个问题的答案是\(\frac{1}{p+1}\)。

也就是说,设\(p_i\)表示当\(x=i\)时\(y\)的个数,那么原问题的答案是\(\sum\limits_{i=1}^n \frac{1}{p_i+1}\)。

这个式子看上去只能\(\Theta(n)\)地求。

发现\([2,n]\)中有\(\lfloor \sqrt n \rfloor-1\)个平方数,三次根号\(n\)下取整减1个立方数……,\(p_i\neq 0\)的数的个数很少,这些数可以暴力求。

\(p_i=0\)的数的\(\frac{1}{p_i+1}=1\),可以直接求。

代码

#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define LL long long
#define maxn 1000007
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int n,t,mx=1e9,pos[maxn],cnt;
map<int,int>mp;
LL mul(LL x,int y){LL res=1;while(y){if(y&1)res*=x;x*=x,y>>=1;}return res;}
int main()
{
rep(i,2,30)
{
LL now=mul(2,i);int j;
for(j=2;now<=mx;)
{
mp[now]++;
if(mp[now]==1)pos[++cnt]=now;
j++;now=mul(j,i);
}
}
t=read();
while(t--)
{
n=read();
double ans=0.0;int num=0;
rep(i,1,cnt)if(pos[i]<=n)num++,ans+=1.0/((double)(mp[pos[i]]+1));
ans+=(double)(n-num);
printf("%.8lf\n",ans);
}
return 0;
}

一些感想

伟大的ysf口胡的

并不对劲的P5589的更多相关文章

  1. 并不对劲的BJOI2019

    一些感想 现实并非游戏,并不支持反复刷关 猎人和防御工事一起被老山龙摧毁了: 猎人惨死雨中,结云村永无放晴之日: 猎人被狂龙病毒侵蚀,天空山上黑蚀龙泛滥. 好像这才是怪物猎人系列的真实结局呢 day ...

  2. 并不对劲的uoj276. [清华集训2016]汽水

    想要很对劲的讲解,请点击这里 题目大意 有一棵\(n\)(\(n\leq 50000\))个节点的树,有边权 求一条路径使该路径的边权平均值最接近给出的一个数\(k\) 输出边权平均值下取整的整数部分 ...

  3. 并不对劲的DFT

    FFT是一个很多人选择背诵全文的算法. #include<algorithm> #include<cmath> #include<complex> #include ...

  4. 并不对劲的字符串专题(三):Trie树

    据说这些并不对劲的内容是<信息学奥赛一本通提高篇>的配套练习. 并不会讲Trie树. 1.poj1056-> 模板题. 2.bzoj1212-> 设dp[i]表示T长度为i的前 ...

  5. 并不对劲的字符串专题(二):kmp

    据说这些并不对劲的内容是<信息学奥赛一本通提高篇>的配套练习. 先感叹一句<信息学奥赛一本通提高篇>上对kmp的解释和matrix67的博客相似度99%(还抄错了),莫非mat ...

  6. 并不对劲的bzoj1861: [Zjoi2006]Book 书架

    传送门-> 这题的正确做法是splay维护这摞书. 但是并不对劲的人选择了暴力(皮这一下很开心). #include<algorithm> #include<cmath> ...

  7. 并不对劲的bzoj3932: [CQOI2015]任务查询系统

    传送门-> 离线操作听上去很简单,遗憾的是它强制在线. 每个时刻可以看成可持久化线段树中的一个版本,而每一个版本的线段树维护的是值某一段区间且在这个版本对应的时刻出现的数之和. 会发现同一时刻可 ...

  8. 并不对劲的bzoj1853:[SCOI2010]幸运数字

    传送门-> 据说本题的正确读法是[shìng运数字]. 听上去本题很适合暴力,于是并不对劲的人就去写了.其实这题就是一个很普(有)通(趣)暴力+神奇的优化. 首先,会发现幸运数字很少,那么就先搜 ...

  9. 并不对劲的bzoj4199: [Noi2015]品酒大会

    传送门-> 又称普及大会. 这题没什么好说的……后缀自动机裸题……并不对劲的人太菜了,之前照着标程逐行比对才过了这道题,前几天刚刚把这题一遍写对…… 这题的输出和某两点相同后缀的长度有关,那么把 ...

随机推荐

  1. 2018-2019-2 20175227张雪莹《Java程序设计》实验四 《Android程序设计》

    2018-2019-2 20175227张雪莹<Java程序设计> 实验四 <Android程序设计> 实验报告封面 课程:Java程序设计 班级:1752班 姓名:张雪莹 学 ...

  2. 后盾网lavarel视频项目---Vue项目使用vue-awesome-swiper轮播插件

    后盾网lavarel视频项目---Vue项目使用vue-awesome-swiper轮播插件 一.总结 一句话总结: vue中的插件的使用和js插件的使用一样的简单,只是vue插件的引入过程有些不同 ...

  3. pm2 配置方式

    1.命令生产默认示例配置文件pm2 ecosystem或pm2 init,运行默认会生成ecosystem.config.js配置文件 module.exports = { apps: [ { nam ...

  4. 使用 PM2 将 Node.js 的集群变得更加容易

    介绍 众所周知,Node.js运行在Chrome的JavaScript运行时平台上,我们把该平台优雅地称之为V8引擎.不论是V8引擎,还是之后的Node.js,都是以单线程的方式运行的,因此,在多核心 ...

  5. AnimationUtil

    import android.view.View; import android.view.animation.AlphaAnimation; public class AnimationUtil { ...

  6. MySql workbeach 更改侧边栏大小

    1.定位到workbench的样式目录下 cd /usr/share/mysql-workbench/ 2.更改其样式文件 GtkStatusbar GtkLabel { font-size: 12p ...

  7. vue+npm+Element插件+路由

    首先安装node.js 之后使用管理员输入命令 然后,就可以使用 npm 命令安装了: npm install -g @vue/cli安装完后,打开命令行窗口,会有一个 vue 命令:vue -v v ...

  8. 一百二十六:CMS系统之轮播图管理页面布局和添加轮播图的模态对话框制作

    视图 @bp.route('/banners/')@login_required@permission_required(CMSPersmission.POSTER)def banners(): re ...

  9. Delphi 字符串加密与解密函数

    EncdDecd 单元: EncodeString.DecodeString.EncodeBase64.DecodeBase64 uses EncdDecd; const str = '万一的 Del ...

  10. React Native常用的第三方开源库

    记录一下自己暂目前了解和使用的一些开源库和官方文档和优秀博客介绍,希望对你有帮助☺️: 1.Toast: https://github.com/magicismight/react-native-ro ...