【hdu5517】Triple
题目大意:给定一个二元组集合A{<a, b>}, 一个三元组集合B{<c, d, e>}, 定义 C 为 A 和 B 在 {b = e} 上的连接,求 C 集合中凸点的个数,即:最值点的个数。
题解:
C 为一个三元组集合,求凸点的个数问题等价于三维偏序问题,去重之后可以直接计算。
不过,发现若直接暴力进行连接运算,最坏情况下会产生 \(O(NM)\) 个 C 元组,时间和空间无法承受。发现对于 A 中同一个 b 值的所有二元组来说,只有最大的 a 值才可能对答案产生贡献。因此,考虑对于每一个 b,都找到一个最大的 a 以及对应元组的数量。这样,对于每一个 B 中的元组来说,至多只有一个 A 中的元组与之对应,即:C 中的合法元素至多只有 \(O(M)\) 个,答案的上界也是 M。
本题中的 c, d 值域较小,因此,可以直接利用二维树状数组进行维护,即:对 a 排序,并用树状数组维护 c, d 即可。
注意:三位偏序问题一定要去重。
代码如下
#include <bits/stdc++.h>
using namespace std;
struct A {
int a, b;
};
struct B {
int c, d, e;
};
struct C {
int a, c, d, cnt;
C(int x, int y, int z, int w) {
a = x, c = y, d = z, cnt = w;
}
friend bool operator==(const C &x, const C &y) {
return x.a == y.a && x.c == y.c && x.d == y.d;
}
};
struct fenwick {
vector<vector<int>> t;
int n;
fenwick(int _n) {
n = _n;
t.resize(_n + 1, vector<int>(_n + 1));
}
void modify(int x, int y, int val) {
for (int i = x; i <= n; i += i & -i) {
for (int j = y; j <= n; j += j & -j) {
t[i][j] += val;
}
}
}
int query(int x, int y) {
int ret = 0;
for (int i = x; i; i -= i & -i) {
for (int j = y; j; j -= j & -j) {
ret += t[i][j];
}
}
return ret;
}
int get(int x, int y) {
return query(n, n) - query(n, y - 1) - query(x - 1, n) + query(x - 1, y - 1);
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int T, kase = 0;
cin >> T;
while (T--) {
int n, m, range = 0, fen_size = 0;
cin >> n >> m;
vector<A> a(n); // a, b
vector<B> b(m); // c, d, e
for (int i = 0; i < n; i++) {
cin >> a[i].a >> a[i].b;
range = max(range, a[i].b);
}
for (int i = 0; i < m; i++) {
cin >> b[i].c >> b[i].d >> b[i].e;
range = max(range, b[i].e);
fen_size = max(fen_size, max(b[i].c, b[i].d));
}
vector<pair<int, int>> maxa(range + 1); // maxa, cnt
for (int i = 0; i < n; i++) {
if (a[i].a > maxa[a[i].b].first) {
maxa[a[i].b].first = a[i].a;
maxa[a[i].b].second = 1;
} else if (a[i].a == maxa[a[i].b].first) {
maxa[a[i].b].second++;
}
}
vector<C> all, valid;
for (int i = 0; i < m; i++) {
if (maxa[b[i].e].second != 0) {
all.emplace_back(maxa[b[i].e].first, b[i].c, b[i].d, maxa[b[i].e].second);
}
}
sort(all.begin(), all.end(), [&](const C &x, const C &y) {
return x.a == y.a ? x.c == y.c ? x.d > y.d : x.c > y.c : x.a > y.a;
});
valid.emplace_back(all.front());
for (int i = 1; i < (int)all.size(); i++) {
if (all[i] == valid.back()) {
valid.back().cnt += all[i].cnt;
} else {
valid.emplace_back(all[i]);
}
}
int ans = 0;
fenwick t(fen_size);
for (int i = 0; i < (int)valid.size(); i++) {
if (t.get(valid[i].c, valid[i].d) == 0) {
ans += valid[i].cnt;
}
t.modify(valid[i].c, valid[i].d, 1);
}
cout << "Case #" << ++kase << ": " << ans << endl;
}
return 0;
}
【hdu5517】Triple的更多相关文章
- 【BZOJ3771】Triple(生成函数,多项式运算)
[BZOJ3771]Triple(生成函数,多项式运算) 题面 有\(n\)个价值\(w\)不同的物品 可以任意选择\(1,2,3\)个组合在一起 输出能够组成的所有价值以及方案数. \(n,w< ...
- 【BZOJ3771】Triple 生成函数+FFT
[BZOJ3771]Triple Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: “这把斧头,是不是你的?” 樵夫一看 ...
- 【bzoj3771】【xsy1728】Triple
[bzoj3771][xsy1728] 题意 求\(\sum_{i}[a_i=S]+\sum_{i<j}[a_i+a_j=S]+\sum_{i<j<k}[a_i+a_j+a_k=S] ...
- 【BZOJ】【3771】Triple
生成函数+FFT Orz PoPoQQQ 这个题要算组合的方案,而且范围特别大……所以我们可以利用生成函数来算 生成函数是一个形式幂级数,普通生成函数可以拿来算多重集组合……好吧我承认以上是在瞎扯→_ ...
- 【NJU749D】triple(莫比乌斯反演)
题意: cas<=100 n<=10^5 思路:与两个数的没什么区别 F(d)=(n div d)*(n div d-1)*(n div d-2) div 6 再加上喜闻乐见的下底函数分块 ...
- 【BZOJ3771】Triple 生成函数 FFT 容斥原理
题目大意 有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数.你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和.请你对于每种可能的总价值,求出有多少种选择方案. ...
- 【bzoj3771】Triple FFT+容斥原理
题目描述 樵夫的每一把斧头都有一个价值,不同斧头的价值不同.总损失就是丢掉的斧头价值和. 他想对于每个可能的总损失,计算有几种可能的方案. 注意:如果水神拿走了两把斧头a和b,(a,b)和(b,a)视 ...
- 【HDOJ5517】Triple(二维BIT)
题意:给你n个二元组<a,b>, m个三元组<c,d,e>. 如果d = e,那么<a,c,d>会组成一个新的三元组集合G. 问G中有多少个三元组在凸点.(没有其它 ...
- 【BZOJ】3771: Triple FTT+生成函数
[题意]给定n个物品,价值为$a_i$,物品价格互不相同,求选一个或两个或三个的价值为x的方案数,输出所有存在的x和对应方案数.$ai<=40000$. [算法]生成函数+FFT [题解]要求价 ...
随机推荐
- 调用存储在session属性里的东西
将对象放在session里面 request.getSession().setAttribute("username", username); //放到会话里 永EL表达式调用 $ ...
- 使用PowerShell 自动安装IIS 及自动部署网站
执行环境:Windows Server 2012 R2 安装iis核心代码,可自定义安装项 注意这里不能使用add-windowsfeature "Web-Filtering", ...
- nginx多线程高并发
直接上图 Master-Worker模式 1.Nginx 在启动后,会有一个 master 进程和多个相互独立的 worker 进程. 2.接收来自外界的信号,向各worker进程发送信号,每个进程都 ...
- oracle导出空表
1.先查询数据库空表 select 'alter table '||table_name||' allocate extent;' from user_tables where num_rows=0 ...
- 栈与队列基本操作 Java实现
一.顺序栈 //数组实现顺序栈 public class OrderStack { private String[] elem; private int top; OrderStack(int k) ...
- php 一些常用函数
1.var_export() var_export — 输出或返回一个变量的字符串表示此函数返回关于传递给该函数的变量的结构信息,它和 var_dump() 类似,不同的是其返回的表示是合法的 PHP ...
- MySQ-表关系-外键-修改表结构-复制表-03
目录 前言 不合理的表结构(案例) 带来的问题 如何解决问题? 如何确定表关系? 表关系 一对多 多对多 一对一 应用场景 判断表关系最简单的语法 三种关系常见案例 如何建立表关系? 外键 forei ...
- MySQL8在CentOS7上的安装
Install_CentOS7_MySQL8_binary.sh #!/bin/bash MySQL_Package=mysql-8.0.16-linux-glibc2.12-x86_64.tar.x ...
- 深入15个HTML元素方法,你见过吗?
虽然现代化的 web 开发更多地依赖各种 MVC 框架,但开发者仍需要熟练掌握 HTML 与 DOM 方面的基础知识.不过,即使是有着多年经验的前端开发者,也会遇到一些不明所以的情况.本文首先将为初学 ...
- feign发送get请求时用复杂类传参
如题,网上都有做法,只有有些人说的不清楚.而我自己也遇到了其他坑这里记录一下 1.就是网上说的做法: 客户端:application.yml加上配置: feign: httpclient: enabl ...