大型分布式爬虫准备 scrapy + request

而我避免这些问题的方式,控制台清除所有定时
var id = setInterval(function() {}, 0);
while (id--) clearInterval(id);
$(articleSelector).css('height', 'initial')
$(articleSelector).removeClass('lock')
$('#locker').css('display', 'none')
python 运行 js 脚本
pip install PyExecJS
eleme.js
function getParam(){
return 'hello world!'
}
xxx.py
import execjs
import os
os.environ["EXECJS_RUNTIME"] = "PhantomJS"
node = execjs.get()
file = 'eleme.js'
ctx = node.compile(open(file).read())
js_encode = 'getParam()'
params = ctx.eval(js_encode)
print(params)
python 包管理
virtualenv virtualwrapper pipenv pyenv --》 conda
步骤
1. pipenv shell
2. pip install scrapy
3. scrapy shell # 可以做 简单调试
3. scrapy startproject videospider # 生成 基本骨架
4. scrapy genspider jobbole www.jobbole.com
5. 取巧 构造一个 main.py 用来在 IDE 里调试
爬虫中 url 去重
set 去重 是 非常占用内存的
md5 信息摘要 算法 之后会省很多, 但是仍然不如 bitmap 方式
bitmap 会 很容易 造成 hash 冲突
bloom filter 这一种 可以通过 hash 函数 减少 hash 冲突
简而言之 言而简之 urls --> set(urls) --> set(md5(url) s) --> bitmap( xxx ) --> bloom filter( multi_hash_func ( xxx ))
下面这个教程要看评论再说。。。坑哭了
https://blog.csdn.net/chenvast/article/details/79103288
爬取 cnblog 文章 练手
# 使用 pipenv 管理环境
mkdir spiders
cd spiders
pipenv install
pip install scrapy -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
# 利用 模板生成 项目基本样子 类似于 springboot
scrapy startproject ArticleSpider
# 爬取 二级域名下的 文章
cd xxx\ArticleSpider\ArticleSpider\spiders\
scrapy genspider cnblog news.cnblogs.com
# 修改 settings.py 中 的 爬虫配置 ROBOTSTXT_OBEY 为 False
ROBOTSTXT_OBEY = False
# 打开 编辑自动生成的 spider/cnblog.py
# -*- coding: utf-8 -*-
import scrapy
import re
from ArticleSpider.items import ArticleItem
from ArticleSpider.utils.utils import get_md5
from scrapy.http import Request
from urllib import parse
class CnblogSpider(scrapy.Spider):
name = 'cnblog'
allowed_domains = ['news.cnblogs.com']
start_urls = ['http://news.cnblogs.com/']
def parse(self, response):
news_selector_list = response.xpath('//div[@id="news_list"]/div[@class="news_block"]')
for news_selector in news_selector_list:
content = news_selector.xpath('div[@class="content"]')
anchor = content.xpath('h2/a')
article_url = anchor.xpath('@href').extract()[0]
article_title = anchor.xpath("text()").extract()[0]
article_front_image_url = content.xpath('div[@class="entry_summary"]/a/@href').extract()[0]
footer = content.xpath('div[@class="entry_footer"]')
article_author = footer.xpath('a/text()').extract()[0]
matched = re.match('评论\((\d+)\)', footer.xpath('span[@class="comment"]/a/text()').extract()[0])
article_comments = matched.group(1) if matched else 0
article_view = footer.xpath('span[@class="view"]').extract()[0]
article_tag = footer.xpath('span[@class="tag"]').extract()[0]
article_item = ArticleItem()
article_item['article_url'] = article_url
article_item['article_title'] = article_title
article_item['article_front_image_url'] = article_front_image_url
article_item['article_author'] = article_author
article_item['article_comments'] = article_comments
article_item['article_view'] = article_view
article_item['article_tag'] = article_tag
article_item['article_id'] = get_md5(article_url)
yield Request(url=parse.urljoin(response.url ,article_url),meta={"item":article_item}, callback=self.parse_detail)
pass
def parse_detail(self, response):
pass
# 有些时候 我们可以使用 Itemloader 来让我们的代码变得更友好
item_loadder = ItemLoader(item=ArticleItem(), response=response)
item_loadder.add_xpath(field_name="article_url", xpath="//div[@id='news_list']/div[@class='news_block']/div[@class='content']/h2/a/@href")
.
.
.
next_urls_selector = response.xpath('//*[@id="sideleft"]/div[5]/a[11]')
总结 对付反爬
访问 500 一般是 UA 没设置
cookie 携带
token
salt
sign
ctrl + shift + f 很好用 在查找 js 调用时候
cookies 池
ip 代理 池
pip3 install faker
https://cmder.net/

搭建自己的 ip 代理池

mongo db 安装使用
# 创建 ipproxy 数据库 如果没有就创建
use ipproxy;
### 插入数据
db.ipproxy.insert({"ip_port":"192.168.0.18:5678"})
# 删除 数据库
db.dropDatabase()
# 删除集合
db.collection.drop()
# 查询集合
db.ipproxy.find().pretty()
db.createCollection("mycol", { capped : true, autoIndexId : true, size :
6142800, max : 10000 } )
db.ipproxy.drop()
大型分布式爬虫准备 scrapy + request的更多相关文章
- scrapy 分布式爬虫- RedisSpider
爬去当当书籍信息 多台机器同时爬取,共用一个redis记录 scrapy_redis 带爬取的request对象储存在redis中,每台机器读取request对象并删除记录,经行爬取.实现分布式爬虫 ...
- scrapy分布式爬虫scrapy_redis二篇
=============================================================== Scrapy-Redis分布式爬虫框架 ================ ...
- scrapy分布式爬虫scrapy_redis一篇
分布式爬虫原理 首先我们来看一下scrapy的单机架构: 可以看到,scrapy单机模式,通过一个scrapy引擎通过一个调度器,将Requests队列中的request请求发给下载器,进行页 ...
- 第三百七十节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现搜索结果分页
第三百七十节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现搜索结果分页 逻辑处理函数 计算搜索耗时 在开始搜索前:start_time ...
- 第三百六十九节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现搜索功能
第三百六十九节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现搜索功能 Django实现搜索功能 1.在Django配置搜索结果页的路由映 ...
- 第三百六十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)用Django实现搜索的自动补全功能
第三百六十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—用Django实现搜索的自动补全功能 elasticsearch(搜索引擎)提供了自动补全接口 官方说明:https://www.e ...
- 第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中
第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详 ...
- 第三百五十七节,Python分布式爬虫打造搜索引擎Scrapy精讲—利用开源的scrapy-redis编写分布式爬虫代码
第三百五十七节,Python分布式爬虫打造搜索引擎Scrapy精讲—利用开源的scrapy-redis编写分布式爬虫代码 scrapy-redis是一个可以scrapy结合redis搭建分布式爬虫的开 ...
- 第三百五十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy信号详解
第三百五十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy信号详解 信号一般使用信号分发器dispatcher.connect(),来设置信号,和信号触发函数,当捕获到信号时执行 ...
随机推荐
- C# 防火墙操作之开启与关闭
通过代码操作防火墙的方式有两种:一是代码操作修改注册表启用或关闭防火墙:二是直接操作防火墙对象来启用或关闭防火墙.不论哪一种方式,都需要使用管理员权限,所以操作前需要判断程序是否具有管理员权限. 1. ...
- C++中的各种容器实现原理
C++ 容器及选用总结 vector 拥有一段连续的内存空间 list 就是数据结构中的双向链表 deque 的动态数组首尾都开放 set 有序的容器,红黑树的平衡二叉检索树的数据结构 multise ...
- YJango的卷积神经网络——介绍
原文地址:https://zhuanlan.zhihu.com/p/27642620 如果要提出一个新的神经网络结构,首先就需要引入像循环神经网络中“时间共享”这样的先验知识,降低学习所需要的训练数据 ...
- c#阿里云短信验证码
发送验证码 private static void SendAcs(string mobile, string templateCode, dynamic json, int ourid) { if ...
- oracle 查看表空间使用比
select b.file_name 物理文件名, b.tablespace_name 表空间, b.bytes / / 大小M, (b.bytes - sum(nvl(a.bytes, ))) / ...
- JndiObjectFactoryBean 配置数据源
转: JndiObjectFactoryBean 配置数据源 2017年08月29日 22:04:28 病毒先生 阅读数:7338 版权声明:本文为博主原创文章,未经博主允许不得转载. https ...
- Hibernate5+Spring4整合
(1) pom.xml <!--Spring Object/Relational Mapping --> <dependency> <groupId>org.spr ...
- C基础知识(7):字符串
在C语言中,字符串实际上是使用null字符'\0' 终止的一维字符数组.因此,一个以null结尾的字符串,包含了组成字符串的字符. C编译器会在初始化数组时,自动把'\0'放在字符串的末尾.所以不需要 ...
- redis外网无法连接问题
1.外网无法连接redis 解决方法: 把redis.conf里的bind 127.0.0.1注释掉,不行的话把127.0.0.1修改成0.0.0.0 2.make的时候显示没有gcc 解决方法: 安 ...
- Ansible 直接请求远程主机执行命令
ansible -all -i host1.abc.com, -m ping #注意主机名称后面的逗号,就算一台主机也是必须的.多台主机可以用逗号隔开 ansible all -i host1.abc ...