【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
from:https://blog.csdn.net/mao_xiao_feng/article/details/53382790
 

在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?

首先明确一点,loss是代价值,也就是我们要最小化的值

tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)

除去name参数用以指定该操作的name,与方法有关的一共两个参数

第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes

第二个参数labels:实际的标签,大小同上

 

具体的执行流程大概分为两步:

第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个num_classes大小的向量([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率)

softmax的公式是:

 

至于为什么是用的这个公式?这里不介绍了,涉及到比较多的理论证明

 

第二步是softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:

 

其中指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)

就是softmax的输出向量[Y1,Y2,Y3...]中,第i个元素的值

显而易见,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss

注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,如果求loss,则要做一步tf.reduce_mean操作,对向量求均值!

 

理论讲完了,上代码

  1. import tensorflow as tf
  2. #our NN's output
  3. logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
  4. #step1:do softmax
  5. y=tf.nn.softmax(logits)
  6. #true label
  7. y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
  8. #step2:do cross_entropy
  9. cross_entropy = -tf.reduce_sum(y_*tf.log(y))
  10. #do cross_entropy just one step
  11. cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits, y_))#dont forget tf.reduce_sum()!!
  12. with tf.Session() as sess:
  13. softmax=sess.run(y)
  14. c_e = sess.run(cross_entropy)
  15. c_e2 = sess.run(cross_entropy2)
  16. print("step1:softmax result=")
  17. print(softmax)
  18. print("step2:cross_entropy result=")
  19. print(c_e)
  20. print("Function(softmax_cross_entropy_with_logits) result=")
  21. print(c_e2)

输出结果是:

  1. step1:softmax result=
  2. [[ 0.09003057  0.24472848  0.66524094]
  3. [ 0.09003057  0.24472848  0.66524094]
  4. [ 0.09003057  0.24472848  0.66524094]]
  5. step2:cross_entropy result=
  6. 1.22282
  7. Function(softmax_cross_entropy_with_logits) result=
  8. 1.2228

最后大家可以试试e^1/(e^1+e^2+e^3)是不是0.09003057,发现确实一样!!这也证明了我们的输出是符合公式逻辑的

转自:https://www.cnblogs.com/bonelee/p/8995936.html

deep_learning_Function_softmax_cross_entropy_with_logits的更多相关文章

随机推荐

  1. 八十:memcached之安装与参数

    Memcached是一个高并发的内存键值对缓存系统,它的主要作用是将数据库查询结果,内容,以及其它一些耗时的计算结果缓存到系统内存中,从而加速Web应用程序的响应速度. 官网:http://memca ...

  2. IOS input框轻点无效修复方法

    FastClick.prototype.focus = function(targetElement) { targetElement.focus();//加入这一句话就OK了 };

  3. 渗透测试 - KALI Linux 学习 - kali linux如何启动METASPLOIT服务

    kali 2.0 已经没有metasploit 这个服务了,所以service metasploit start 的方式不起作用. 在kali 2.0中启动带数据库支持的MSF方式如下: #1  首先 ...

  4. 【JulyEdu-Python基础】第 6 课:高级面向对象

    使用@property添加属性和自定义属性 __slots__和property 方法和属性的动态绑定 使用__slots__限定class实例能添加的属性 __slots__仅对当前类实例起作用,对 ...

  5. URL库函数

    1.urlopen from urllib import request resp=request urlopen('http://www.baidu.com') print(resp.read()) ...

  6. 3 Java Web 入门 1 Servlet 入门

    1 Tomcat 1.1 安装 JDK Oracle 官网 1.2 安装 Tomcat

  7. C# Tcp协议收发数据(TCPClient发,Socket收)

    转载自:http://www.cnblogs.com/WTFly/p/5340617.html 运行这个程序前需要先关闭Windows防火墙,Win7系统关闭防火墙的方法是在控制面板的"控制 ...

  8. 一篇文章搞懂python2、3编码

    说在前边: 编码问题一直困扰着每一个程序员的编程之路,如果不将它彻底搞清楚,那么你的的这条路一定会走的格外艰辛,尤其是针对使用python的程序员来说,这一问题更加显著, 因为python有两个版本, ...

  9. 单机版的mysql安装

    查是否安装了mysql:centos6:rpm -qa |grep mysqlcentos7:rpm -qa|grep mariadb或rpm -qa |grep mysql 有老的版本可以执行命令卸 ...

  10. 简单nginx代理配置

    nginx.conf: # For more information on configuration, see:# * Official English Documentation: http:// ...