【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
from:https://blog.csdn.net/mao_xiao_feng/article/details/53382790
 

在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?

首先明确一点,loss是代价值,也就是我们要最小化的值

tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)

除去name参数用以指定该操作的name,与方法有关的一共两个参数

第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes

第二个参数labels:实际的标签,大小同上

 

具体的执行流程大概分为两步:

第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个num_classes大小的向量([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率)

softmax的公式是:

 

至于为什么是用的这个公式?这里不介绍了,涉及到比较多的理论证明

 

第二步是softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:

 

其中指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)

就是softmax的输出向量[Y1,Y2,Y3...]中,第i个元素的值

显而易见,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss

注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,如果求loss,则要做一步tf.reduce_mean操作,对向量求均值!

 

理论讲完了,上代码

  1. import tensorflow as tf
  2. #our NN's output
  3. logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
  4. #step1:do softmax
  5. y=tf.nn.softmax(logits)
  6. #true label
  7. y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
  8. #step2:do cross_entropy
  9. cross_entropy = -tf.reduce_sum(y_*tf.log(y))
  10. #do cross_entropy just one step
  11. cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits, y_))#dont forget tf.reduce_sum()!!
  12. with tf.Session() as sess:
  13. softmax=sess.run(y)
  14. c_e = sess.run(cross_entropy)
  15. c_e2 = sess.run(cross_entropy2)
  16. print("step1:softmax result=")
  17. print(softmax)
  18. print("step2:cross_entropy result=")
  19. print(c_e)
  20. print("Function(softmax_cross_entropy_with_logits) result=")
  21. print(c_e2)

输出结果是:

  1. step1:softmax result=
  2. [[ 0.09003057  0.24472848  0.66524094]
  3. [ 0.09003057  0.24472848  0.66524094]
  4. [ 0.09003057  0.24472848  0.66524094]]
  5. step2:cross_entropy result=
  6. 1.22282
  7. Function(softmax_cross_entropy_with_logits) result=
  8. 1.2228

最后大家可以试试e^1/(e^1+e^2+e^3)是不是0.09003057,发现确实一样!!这也证明了我们的输出是符合公式逻辑的

转自:https://www.cnblogs.com/bonelee/p/8995936.html

deep_learning_Function_softmax_cross_entropy_with_logits的更多相关文章

随机推荐

  1. CSS display的几个常用的属性值,inline , block, inline-block

    1.解释一下display的几个常用的属性值,inline , block, inline-block inline(行内元素): 使元素变成行内元素,拥有行内元素的特性,即可以与其他行内元素共享一行 ...

  2. [spring]AOP(切面)编程

    AOP 即 Aspect Oriented Program 面向切面编程 首先,在面向切面编程的思想里面,把功能分为核心业务功能,和周边功能. 所谓的核心业务,比如登陆,增加数据,删除数据都叫核心业务 ...

  3. python programming作业11 Qt designer (打地鼠,不是很完美)

     不导包的代码 from PyQt5 import QtCore, QtGui, QtWidgets import sys from PyQt5.QtWidgets import QApplicati ...

  4. 添加额外yun源

    .yum install jq 发没有jq安装包,无法安装 .下载并安装EPEL [root@node2 coredns]# wget http://dl.fedoraproject.org/pub/ ...

  5. 使用rman备份将rac环境恢复到单实例

    使用rman备份将rac环境恢复到单实例 rac环境 [oracle@rac02 ~]$ cat /etc/hosts 127.0.0.1 localhost localhost.localdomai ...

  6. java:面向对象(接口(续),Compareble重写,Comparator接口:比较器的重写,内部类,垃圾回收机制)

    接口: *接口定义:使用interface关键字 * [修饰符] interface 接口名 [extends 父接口1,父接口2...]{ * //常量的声明 * //方法的声明 * } *接口成员 ...

  7. python分布式进程

    分布式进程指的是将Process进程分布到多台机器上,充分利用多态机器的性能完成复杂的任务 分布式进程在python 中依然要用到multiprocessing 模块.multiprocessing模 ...

  8. 【JulyEdu-Python基础】第 6 课:高级面向对象

    使用@property添加属性和自定义属性 __slots__和property 方法和属性的动态绑定 使用__slots__限定class实例能添加的属性 __slots__仅对当前类实例起作用,对 ...

  9. 字符串——AC自动机

    目录 一.前言 二.思路 三.代码 四.参考资料 一.前言 以前一直没学AC自动机,主要是被名字吓到了,自动AC,这么强的名字肯定很难,学了后才发现,其实不难. AC自动机并不是Acept autom ...

  10. Windows Server 中配置权威时间服务器

    0" style="box-sizing: inherit; outline: none;"> 若要配置 Windows 时间服务以使用内部硬件时钟,请使用下列方法 ...