题意

判断一个存在哈密顿回路的图是否是平面图。

n≤200,m≤10000n\le200,m\le10000n≤200,m≤10000

题解

如果一定存在一个环,那么连的边要么在环里面要么在外面。那么把在同侧会矛盾的边之间连边,如果是一个二分图就是平面图。

有问题的是边数是O(m2)O(m^2)O(m2)的。但是可以发现当m>n∗3−6m>n*3-6m>n∗3−6的时候一定形成不了平面图。所以就判一下,如果小于等于就O(m2)O(m^2)O(m2)做。

证明:先画出一条环,有nnn条边,然后这个环的一个点向非相邻的n−3n-3n−3个点连接n−3n-3n−3条边可以保证两两不相交,外面一侧如此,故如果边数m>n∗3−6m>n*3-6m>n∗3−6,就直接判断NONONO即可。保证了复杂度。

判二分图的方法可以用带权并查集或者直接染色,这里写的是带权并查集。

CODE

#include <bits/stdc++.h>
using namespace std;
inline void rd(int &x) {
char ch; for(;!isdigit(ch=getchar()););
for(x=ch-'0';isdigit(ch=getchar());)x=x*10+ch-'0';
}
const int MAXN = 205;
const int MAXM = 10005;
int n, m, u[MAXM], v[MAXM], seq[MAXN], id[MAXN];
int d[MAXM], fa[MAXM];
int find(int x) {
if(x != fa[x]) {
int old = fa[x];
fa[x] = find(fa[x]);
d[x] ^= d[old];
}
return fa[x];
}
int main() {
int T; rd(T); while(T--) {
rd(n), rd(m);
for(int i = 1; i <= m; ++i) rd(u[i]), rd(v[i]);
for(int i = 1; i <= n; ++i) rd(seq[i]), id[seq[i]] = i;
if(m > 3*n-6) puts("NO");
else {
bool flg = 1;
for(int i = 1; i <= m && flg; ++i) {
fa[i] = i; d[i] = 0;
int l = min(id[u[i]], id[v[i]]);
int r = max(id[u[i]], id[v[i]]);
for(int j = 1; j < i && flg; ++j)
if(id[u[j]] != l && id[u[j]] != r && id[v[j]] != l && id[v[j]] != r && ((l <= id[u[j]] && id[u[j]] <= r)^(l <= id[v[j]] && id[v[j]] <= r))) {
int u = find(i), v = find(j);
if(u == v) flg &= (d[i] != d[j]);
else fa[u] = v, d[u] = d[i] ^ d[j] ^ 1;
}
}
puts(flg ? "YES" : "NO");
} }
}

BZOJ1997 HNOI2010 平面图判定 planar (并查集判二分图)的更多相关文章

  1. bzoj1997 [HNOI2010]平面图判定Plana

    bzoj1997 [HNOI2010]平面图判定Planar 链接 bzoj luogu 思路 好像有很多种方法过去.我只说2-sat 环上的边,要不在里面,要不在外边. 有的边是不能同时在里面的,可 ...

  2. [BZOJ1997][HNOI2010] 平面图判定

    Description Input Output     是的..BZOJ样例都没给.     题解(from 出题人): 如果只考虑简单的平面图判定,这个问题是非常不好做的. 但是题目中有一个条件— ...

  3. hdu_5354_Bipartite Graph(cdq分治+并查集判二分图)

    题目链接:hdu_5354_Bipartite Graph 题意: 给你一个由无向边连接的图,问对于每一个点来说,如果删除这个点,剩下的点能不能构成一个二分图. 题解: 如果每次排除一个点然后去DFS ...

  4. [HNOI2010] 平面图判定 planar

    标签:二分图判定.题解: 首先可以把题目中给你的那个环给画出来,这样就可以发现对于任意一个图来说,如果两条边要相交,就不能让他们相交,那么这两条边就要一条在里面一条在外面,如果把环画成一条链,那么就是 ...

  5. Luogu P3209 [HNOI2010]平面图判定(2-SAT)

    P3209 [HNOI2010]平面图判定 题意 题目描述 若能将无向图\(G=(V,E)\)画在平面上使得任意两条无重合顶点的边不相交,则称\(G\)是平面图.判定一个图是否为平面图的问题是图论中的 ...

  6. 【BZOJ1998】[HNOI2010]物品调度(并查集,模拟)

    [BZOJ1998][HNOI2010]物品调度(并查集,模拟) 题面 BZOJ,为啥这题都是权限题啊? 洛谷 题解 先不管\(0\)位置是个空,把它也看成一个箱子.那么最终的答案显然和置换循环节的个 ...

  7. P3209 [HNOI2010]平面图判定

    P3209 [HNOI2010]平面图判定 哈密尔顿环之外的任意一条边,要么连在环内部,要么连在环外部 判断两条边在同一部分会相交,则这两条边必须分开 那么把边看作点连边,跑二分图染色就行 #incl ...

  8. HDU 4514 - 湫湫系列故事——设计风景线 - [并查集判无向图环][树形DP求树的直径]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4514 Time Limit: 6000/3000 MS (Java/Others) Memory Li ...

  9. Luogu3209 HNOI2010 平面图判定 平面图、并查集

    传送门 题意:$T$组数据,每组数据给出一个$N$个点,$M$条边,并存在一个$N$元环的图,试判断其是否为一个可平面图(如果存在一种画法,使得该图与给出的图同构且边除了在顶点处以外互相不相交,则称其 ...

随机推荐

  1. linux定时任务每隔5分钟向文本追加一行

    编写shell脚本 test.sh内容如下,上传到linux的root目录 更改文件权限 chmod  777   test.sh 编辑定时任务 crontab  -e */5    *  *  *  ...

  2. 028 Android 旋转动画+病毒查杀效果+自定义样式的ProgressBar

    1.目标效果 旋转动画+病毒查杀效果 2.xml布局文件 (1)activity_kill_virus.xml <?xml version="1.0" encoding=&q ...

  3. Java中的事务及使用

    什么是事务? 事务(Transaction),一般是指要做的或所做的事情.在计算机术语中是指访问并可能更新数据库中各种数据项的一个程序执行单元(unit).事务通常由高级数据库操纵语言或编程语言(如S ...

  4. pip install 遇到的问题

    执行pip命令时遇到 Fatal error in launcher: Unable to create process using '"'   电脑同时安装了python-2.7.13跟p ...

  5. 从零开始学Flask框架-002

    Jinja2模板 默认情况下,Flask 在程序文件夹中的templates 子文件夹中寻找模板. Jinja2 中的extends 指令从Flask-Bootstrap 中导入bootstrap/b ...

  6. 2.33模型--去除字符串两头空格.c

    [注:本程序验证是使用vs2013版] #include <stdio.h> #include <stdlib.h> #include <string.h> #pr ...

  7. Thread interrupted() 线程的中断

    问题: 1.线程的中断方式. 2.为什么中断阻塞中的线程,会抛出异常. 代码示例: package com.hdwl.netty; public class ThreadInterrupted { p ...

  8. SQL Server2008 查找用户登录日志

    select loginname,accdate from sys.syslogins

  9. JS的DOM和BOM

    * JavaScript分三个部分: ECMAScript标准:JS的基本的语法 DOM:Document Object Model --->文档对象模型----操作页面的元素 BOM:Brow ...

  10. Python——pip的安装与使用

    pip 是 Python 包管理工具,该工具提供了对Python 包的查找.下载.安装.卸载的功能.目前如果你在 python.org 下载最新版本的安装包,则是已经自带了该工具.Python 2.7 ...