1040 最大公约数之和

  给出一个n,求1-n这n个数,同n的最大公约数的和。比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15

  看起来很简单对吧,但是n<=1e9,所以暴力是不行的,所以要把公式进行推导。

  引用51nod1040最大公约数之和(欧拉函数)

  

  这个自己上手推一下也很好推的,不过没推过公式的可能不太懂。

 #include<cstdio>
#include<cmath>
typedef long long ll;
const int N=;
bool nop[N]={false};
int pn,pri[N];
void init()
{
pn=;
for(int i=;i<N;i++)
{
if(!nop[i])
pri[pn++]=i;
for(int j=;j<pn&&1ll*i*pri[j]<N;j++)
{
nop[i*pri[j]]=true;
if(i%pri[j]==)
break;
}
}
}
int phi(int x)
{
int ans=x;
for(int i=;i<pn&&pri[i]*pri[i]<=x;i++)
if(x%pri[i]==)
{
ans=ans-ans/pri[i];
while(x%pri[i]==)
x/=pri[i];
}
if(x>)
ans=ans-ans/x;
return ans;
}
ll solve(int x)
{
ll ans=;
int xx=sqrt(x);
for(int i=;i<=xx;i++)
{
if(x%i==)
{
ans+=i*phi(x/i);
if(x/i!=i)
ans+=x/i*phi(i);
}
}
return ans;
}
int main()
{
int n;
init();
while(~scanf("%d",&n))
printf("%lld\n",solve(n));
return ;
}

欧拉函数

  另一个方法就是首先可以观察看出f(n)=∑gcd(i,n)是积性函数的性质(不懂证明),然后借用积性函数的性质

  

  这样要求f(n),我们只需要知道f(pk)等于多少就行了,而f(pk)的话

  

  而不懂怎么化简成最后一步的话,直接跑第一步的式子也行,因为pk它的因子也不会有多少个

 #include<cstdio>
#include<cmath>
typedef long long ll;
const int N=;
bool nop[N]={false};
int pn,pri[N];
void init()
{
pn=;
for(int i=;i<N;i++)
{
if(!nop[i])
pri[pn++]=i;
for(int j=;j<pn&&1ll*i*pri[j]<N;j++)
{
nop[i*pri[j]]=true;
if(i%pri[j]==)
break;
}
}
}
int phi(int x)
{
int ans=x;
for(int i=;i<pn&&pri[i]*pri[i]<=x;i++)
if(x%pri[i]==)
{
ans=ans-ans/pri[i];
while(x%pri[i]==)
x/=pri[i];
}
if(x>)
ans=ans-ans/x;
return ans;
}
//不化简
//ll solve(int x)
//{
// ll ans=1,res;
// for(int i=0;i<pn&&pri[i]<=x;i++)
// {
// if(x%pri[i]==0)
// {
// int y=1,z,num=0;
// res=0;
// while(x%pri[i]==0)
// {
// x/=pri[i];
// y*=pri[i];
// }
// z=y;
// while(z)
// {
// res+=1ll*(y/z-num)*z;
// num=y/z;
// z/=pri[i];
// }
// ans*=res;
// }
// }
// if(x>1)
// ans*=2ll*x-1;
// return ans;
//}
ll solve(int x)
{
ll ans=;
int xx=sqrt(x);
for(int i=;i<=xx;i++)
{
if(x%i==)
{
ans+=i*phi(x/i);
if(x/i!=i)
ans+=x/i*phi(i);
}
}
return ans;
}
int main()
{
int n;
init();
while(~scanf("%d",&n))
printf("%lld\n",solve(n));
return ;
}

自己瞎搞

51nod1040 最大公约数之和,欧拉函数或积性函数的更多相关文章

  1. 牛客小白月赛12-C(欧拉筛解积性方程)

    题目链接:https://ac.nowcoder.com/acm/contest/392/C 题意:给定n,求: 思路:令res[i]=iN  (%MOD),因为xn是一个积性函数,即(x*y)n=x ...

  2. 51nod 1040 最大公约数之和 欧拉函数

    1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...

  3. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  4. 【模板】埃拉托色尼筛法 && 欧拉筛法 && 积性函数

    埃拉托色尼筛法 朴素算法 1 vis[1]=1; 2 for (int i=2;i<=n;i++) 3 if (!vis[i]) 4 { 5 pri[++tot]=i; 6 for (int j ...

  5. poj2480(利用欧拉函数的积性求解)

    题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2, ...

  6. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  7. 积性函数初步(欧拉$\varphi$函数)

    updata on 2020.4.3 添加了欧拉\(\varphi\)函数为积性函数的证明和它的计算方式 1.积性函数 设\(f(n)\)为定义在正整数上的函数,若\(f(1)=1\),且对于任意正整 ...

  8. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  9. Divisor counting [线性筛积性函数]

    Divisor counting 题目大意:定义f(n)表示整数n的约数个数.给出正整数n,求f(1)+f(2)+...+f(n)的值. 注释:1<=n<=1000,000 想法:我们再次 ...

随机推荐

  1. PHP后台开发小经验

    js页面传参数 js的参数传输是关键,尤其是当一个页面的数据需要分步骤上传时. 同样的删除功能,不会操作批量删除时可以尝试单个删除,功能差不多,实现功能的方法也千千万,先做成它是第一位. 主页面很多条 ...

  2. 并不对劲的CF1194E:Count The Rectangles

    题意 有\(n\)(\(n\leq 5000\))个平行于x轴或平行于y轴的线段.求这些线段围成了多少个长方形.由多个长方形拼成的也算. 题解 考虑暴力的做法:先分别计算每条横着的线与哪些竖着的线有交 ...

  3. Scala学习二十一——隐式转换和隐式参数

    一.本章要点 隐式转换用于类型之间的转换 必须引入隐式转换,并确保它们可以以单个标识符的形式出现在当前作用域 隐式参数列表会要求指定类型的对象.它们可以从当前作用域中以单个标识符定义的隐式对象的获取, ...

  4. WPf ObservableCollection异步调用问题

    当ObservableCollection列表被UI线程占用时,如果在异步线程中调用ObservableCollection,会弹出以下异常: private void Button1_OnClick ...

  5. TPFanControl.ini

    TPFanControl.ini 64位系统安装目录分为两种 64位用:C:\Program Files 32位用:C:\Program Files (x86) 64位系统系统目录分为两种 64位用: ...

  6. 用101000张图片实现图像识别(算法的实现和流程)-python-tensorflow框架

    一个月前,我将kaggle里面的food-101(101000张食物图片),数据包下载下来,想着实现图像识别,做了很长时间,然后自己电脑也带不动,不过好在是最后找各种方法实现出了识别,但是准确率真的非 ...

  7. python现状

    自从官方宣布 2020 年 1 月后不再更新维护 Python2,已经有一大批开源软件将其抛弃.今天,抛弃 Python2 的名单上又多了一个重磅软件.Python2 是 Python 官方在 200 ...

  8. kali linux 安装 qq (deepin-wine)

    添加deeepin-wine 依赖 /etc/apt/sources.list: # Generated by deepin-installer deb http://mirrors.aliyun.c ...

  9. 文件的空间使用和IO统计

    数据库占用的存储空间,从高层次来看,可以查看数据库文件(数据文件,日志文件)占用的存储空间,从较细的粒度上来看,分为数据表,索引,分区占用的存储空间.监控数据库对象占用的硬盘空间,包括已分配,未分配, ...

  10. Spring中事务的传播行为,7种事务的传播行为,数据库事务的隔离级别

    Propagation.REQUIRED 代表当前方法支持当前的事务,且与调用者处于同一事务上下文中,回滚统一回滚(如果当前方法是被其他方法调用的时候,且调用者本身即有事务),如果没有事务,则自己新建 ...