Codeforces Round #554 (Div. 2) F2. Neko Rules the Catniverse (Large Version) (矩阵快速幂 状压DP)
题意
有nnn个点,每个点只能走到编号在[1,min(n+m,1)][1,min(n+m,1)][1,min(n+m,1)]范围内的点。求路径长度恰好为kkk的简单路径(一个点最多走一次)数。
1≤n≤109,1≤m≤4,1≤k≤min(n,12)1\le n\le 10^9,1\le m\le 4,1\le k\le min(n,12)1≤n≤109,1≤m≤4,1≤k≤min(n,12)
分析
直接考虑走路径的话不能判有没有走过,然后就把路径转化为一个序列,每次往里面插入新的点(神了)。因为一个点可以走到比他小的所有点,那么我们把点从大到小插入。
假设现在已有序列为p1,p2,p3,...,pkp_1,p_2,p_3,...,p_kp1,p2,p3,...,pk。那么当前插入一个点iii。
假设插在pjp_jpj和pj+1p_{j+1}pj+1之间,必须满足pjp_jpj能走到iii并且iii能走到pj+1p_{j+1}pj+1。由于iii是最小的,那么所有pjp_jpj都能走到iii,所以只用考虑iii能走到哪些点。
- 一种情况是直接放在最后。
- 另一种情况是i+m≥pj+1i+m\ge p_{j+1}i+m≥pj+1。那么满足这个式子的pj+1p_{j+1}pj+1最多有m(≤4)m(\le 4)m(≤4)个。那么就把[i+1,i+m][i+1,i+m][i+1,i+m]这mmm个数有没有出现在序列中过状压成mmm位222进制数,记为SSS。当前方案就是bitcount(S)bitcount(S)bitcount(S)(SSS在222进制中有多少个111)。
那么一共就有bitcount(S)+1bitcount(S)+1bitcount(S)+1种方案。
另外还可以不插入。
所以DPDPDP状态设为f[i][j][S]f[i][j][S]f[i][j][S]表示到iii这个点,序列长度为jjj,上述状态为SSS的方案数,转移方程为:
f[i+1][j+1][(S<<1∣1)&(2m−1)]+=f[i][j][S]∗(bitcount(S)+1)f[i+1][j][(S<<1∣0)&(2m−1)]+=f[i][j][S]\begin{aligned}
f[i+1][j+1][(S<<1|1)\&(2^m-1)]&+=f[i][j][S]*(bitcount(S)+1)\\
f[i+1][j][(S<<1|0)\&(2^m-1)]&+=f[i][j][S]\end{aligned}f[i+1][j+1][(S<<1∣1)&(2m−1)]f[i+1][j][(S<<1∣0)&(2m−1)]+=f[i][j][S]∗(bitcount(S)+1)+=f[i][j][S]
由于nnn比较大,就矩阵加速就行了。这个矩阵快速幂还是挺好写的。。
CODE
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 100005;
const int mod = 1e9 + 7;
int n, k, m, all;
inline void add(int &x, int y) { x += y; if(x >= mod) x -= mod; }
struct mat {
int a[210][210]; //最大状态数为(k+1)*(1<<m)<=(12+1)*(2^4)=208
mat() { memset(a, 0, sizeof a); }
inline mat operator *(const mat &o)const {
mat re;
for(int k = 0; k < all; ++k)
for(int i = 0; i < all; ++i) if(a[i][k])
for(int j = 0; j < all; ++j) if(o.a[k][j])
add(re.a[i][j], 1ll * a[i][k] * o.a[k][j] % mod);
return re;
}
inline mat operator ^(int b)const {
mat re, A = *this;
for(int i = 0; i < all; ++i) re.a[i][i] = 1;
while(b) {
if(b & 1) re = re * A;
A = A * A; b >>= 1;
}
return re;
}
};
inline int enc(int K, int S) { return K*(1<<m) + S; }
inline int nxt(int S, bool x) { return ((S<<1)|x) & ((1<<m)-1); }
int cnt[16];
int main () {
scanf("%d%d%d", &n, &k, &m);
all = (k+1)*(1<<m); //所有状态数
mat trans, ans;
ans.a[0][enc(0, 0)] = 1;
for(int s = 1; s < (1<<m); ++s) cnt[s] = cnt[s>>1] + (s&1); //预处理2进制下有多少个1
for(int i = 0; i <= k; ++i)
for(int s = 0; s < (1<<m); ++s) {
if(i < k) trans.a[enc(i, s)][enc(i+1, nxt(s, 1))] = cnt[s]+1;
trans.a[enc(i, s)][enc(i, nxt(s, 0))] = 1;
}
ans = ans * (trans ^ n);
int Ans = 0;
for(int s = 0; s < (1<<m); ++s)
add(Ans, ans.a[0][enc(k, s)]);
printf("%d\n", (Ans + mod) % mod);
}
Codeforces Round #554 (Div. 2) F2. Neko Rules the Catniverse (Large Version) (矩阵快速幂 状压DP)的更多相关文章
- CodeForces 1152F2 Neko Rules the Catniverse (Large Version)
题目链接:http://codeforces.com/problemset/problem/1152/F2 题目大意 见http://codeforces.com/problemset/problem ...
- Codeforces Round #554 (Div. 2) 1152B. Neko Performs Cat Furrier Transform
学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152B. Neko Performs Cat Furrier Transform 题目链接:"ht ...
- Codeforces Round #554 (Div. 2) 1152A - Neko Finds Grapes
学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152A - Neko Finds Grapes 题目链接:"https://codeforces. ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
- Codeforces Round #554 (Div. 2) C.Neko does Maths (gcd的运用)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0&l ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
- Codeforces Round #554 (Div. 2) B. Neko Performs Cat Furrier Transform(思维题+log2求解二进制位数的小技巧)
传送门 题意: 给出一个数x,有两个操作: ①:x ^= 2k-1; ②:x++; 每次操作都是从①开始,紧接着是② ①②操作循环进行,问经过多少步操作后,x可以变为2p-1的格式? 最多操作40次, ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))
传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...
- Codeforces Round #554 (Div. 2) E Neko and Flashback (欧拉路径 邻接表实现(当前弧优化..))
就是一欧拉路径 贴出邻接表欧拉路径 CODE #include <bits/stdc++.h> using namespace std; const int MAXN = 100005; ...
随机推荐
- Excel计算、统计函数
Excel计算.统计函数 1.=SUMPRODUCT(array1,[array2]...) 返回对应的区域或数组的乘积之和. 默认运算是乘法,但加.减和除也可能. 2.=COUNT 计数 3.= ...
- python学习--13 基本数据类型 2
接上次补充: s = "username\temail\tpassword\naaa\taa@qq.com\t123\nusername\temail\tpassword\naaa\taa@ ...
- C++ 中不能声明为虚函数的函数有哪些?
目录 普通函数 构造函数 内联成员函数 静态成员函数 友元函数 普通函数 普通函数(非成员函数)只能被overload,不能被override,而且编译器会在编译时绑定函数. 多态的运行期行为体现在虚 ...
- 『Django』第N+1节: Django自带的认证系统 - auth
个人网站: lipeiguan.top 以后会慢慢转移到个人网站, 欢迎大家收藏^ . ^ 写在前面 我们在开发一个网站的时候, 经常需要实现网站的用户系统. 这个时候我们需要实现用户注册.用户登录. ...
- 附录:ARM 手册 词汇表
来自:<DDI0406C_C_arm_architecture_reference_manual.pdf>p2723 能够查询到:“RAZ RAO WI 等的意思” RAZ:Read-As ...
- Manacher算法+注释
Manacher算法是用来求一个字符串中最长回文串的算法. 考虑暴力求最长回文串的做法: 暴力枚举字符串中的所有字串判断是否回文,然后求最大值. 时间复杂度O(n^3),考虑优化. 我们从枚举所有字串 ...
- (七)Hibernate中使用JDBC
在hibernate中获取connection数据库连接有两种方法:(操作数据库常用这种方法) 1. session.doReturningWork 返回一个对象,适用于查询方法 2. sessi ...
- stm32 ds18b20 温度传感器
相关文章:http://blog.csdn.net/zhangxuechao_/article/details/74991985 举例 void DS18B20_in() { GPIO_InitTyp ...
- 11.ForkJoinPool 分支/合并框架 (工作窃取)
/*ForkJoinPool 分支/合并框架 (工作窃取)*/ Fork/Join 框架:就是在必要的情况下,将一个大任务,进行拆分(fork) 成若干个小任务(拆到给出的临界值为止),再将一个个的小 ...
- TDDL生成全局ID原理
TDDL 在分布式下的SEQUENCE原理 TDDL大家应该很熟悉了,淘宝分布式数据层.很好的为我们实现了分库分表.Master/Salve.动态数据源配置等功能. 那么分布式之后,数据库自增序列肯定 ...