import pandas as pd

1. 直接索引

df = pd.DataFrame({'AdmissionDate': ['2021-01-25','2021-01-22','2021-01-20',

                        '2021-01-18','2021-01-17','2021-01-17','2021-01-21'],

                     'StudentID': [7,1,3,2,6,3,4],

                     'Name': ['Jack','Shyam','Mohan','Janne','Lucky','Abhinav','Danny'],

                     'Stream':['CSE','ECE','Civil','Mechanical','CSE','IT','EEE']

                   })
df.set_index("Name",inplace=True)
# 选取某一列或者某几列
print(df["AdmissionDate"])
print(df[["AdmissionDate","StudentID"]]) # 选取多列时,多个列要放到一个list中
Name
Jack 2021-01-25
Shyam 2021-01-22
Mohan 2021-01-20
Janne 2021-01-18
Lucky 2021-01-17
Abhinav 2021-01-17
Danny 2021-01-21
Name: AdmissionDate, dtype: object
AdmissionDate StudentID
Name
Jack 2021-01-25 7
Shyam 2021-01-22 1
Mohan 2021-01-20 3
Janne 2021-01-18 2
Lucky 2021-01-17 6
Abhinav 2021-01-17 3
Danny 2021-01-21 4
# 按行编号选取连续的行
df[1:3] # df[start:end], [start,end)闭开区间
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

AdmissionDate StudentID Stream
Name
Shyam 2021-01-22 1 ECE
Mohan 2021-01-20 3 Civil
# 按行时间索引选取连续的行
df["AdmissionDate"] = pd.to_datetime(df["AdmissionDate"])
df.set_index("AdmissionDate",inplace=True)
# df["2021-01-01":"2021-01-20"]  # 将被弃用
df.sort_index().loc["2021-01-01":"2021-01-20",:] # 推荐写法
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

StudentID Stream
AdmissionDate
2021-01-17 6 CSE
2021-01-17 3 IT
2021-01-18 2 Mechanical
2021-01-20 3 Civil

2. 布尔索引

df = pd.DataFrame({'AdmissionDate': ['2021-01-25','2021-01-22','2021-01-20',

                        '2021-01-18','2021-01-17','2021-01-17','2021-01-21'],

                     'StudentID': [7,1,3,2,6,3,4],

                     'Name': ['Jack','Shyam','Mohan','Janne','Lucky','Abhinav','Danny'],

                     'Stream':['CSE','ECE','Civil','Mechanical','CSE','IT','EEE']

                   })
df["AdmissionDate"] = pd.to_datetime(df["AdmissionDate"])
df.set_index("Name",inplace=True)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

AdmissionDate StudentID Stream
Name
Jack 2021-01-25 7 CSE
Shyam 2021-01-22 1 ECE
Mohan 2021-01-20 3 Civil
Janne 2021-01-18 2 Mechanical
Lucky 2021-01-17 6 CSE
Abhinav 2021-01-17 3 IT
Danny 2021-01-21 4 EEE
# 选取满足某一条件的行
df[df["StudentID"]==2]
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

AdmissionDate StudentID Stream
Name
Janne 2021-01-18 2 Mechanical
# 选取满足多个条件的行
# 注意:索引列表中,可以使用& |操作符,但不能使用and or not等关键字
from datetime import datetime
df[(df["StudentID"]>=3) & (df["AdmissionDate"]>="2021-01-20")] # 注意:索引列表中,各布尔条件必须用圆括号扩起来
2021-01-20 00:00:00
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

AdmissionDate StudentID Stream
Name
Jack 2021-01-25 7 CSE
Mohan 2021-01-20 3 Civil
Danny 2021-01-21 4 EEE
df[(df["StudentID"]>=3) | (df["AdmissionDate"]>="2021-01-20")]
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

AdmissionDate StudentID Stream
Name
Jack 2021-01-25 7 CSE
Shyam 2021-01-22 1 ECE
Mohan 2021-01-20 3 Civil
Lucky 2021-01-17 6 CSE
Abhinav 2021-01-17 3 IT
Danny 2021-01-21 4 EEE

3. 索引器索引

Dataframe的loc和iloc属性

  • loc属性:

    • 以列名和行名作为参数,当只有一个参数时,默认是行名,即抽取整行数据,包括所有列
  • iloc属性:
    • 以行和列位置索引,作为参数。当只有一个参数时,默认是行索引,即抽取整行数据,包括所有列
df = pd.DataFrame({'AdmissionDate': ['2021-01-25','2021-01-22','2021-01-20',

                        '2021-01-18','2021-01-17','2021-01-17','2021-01-21'],

                     'StudentID': [7,1,3,2,6,3,4],

                     'Name': ['Jack','Shyam','Mohan','Janne','Lucky','Abhinav','Danny'],

                     'Stream':['CSE','ECE','Civil','Mechanical','CSE','IT','EEE']

                   })
df["AdmissionDate"] = pd.to_datetime(df["AdmissionDate"])
df.set_index("Name",inplace=True)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

AdmissionDate StudentID Stream
Name
Jack 2021-01-25 7 CSE
Shyam 2021-01-22 1 ECE
Mohan 2021-01-20 3 Civil
Janne 2021-01-18 2 Mechanical
Lucky 2021-01-17 6 CSE
Abhinav 2021-01-17 3 IT
Danny 2021-01-21 4 EEE

3.1 loc索引器

# 选取一行, loc["行索引名称"]
df.loc["Jack"]
AdmissionDate    2021-01-25 00:00:00
StudentID 7
Stream CSE
Name: Jack, dtype: object
# df.loc[['行1,行2'],['列1,列2']]:选取行列组合
df.loc[["Jack","Janne"],["StudentID","Stream"]]
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

StudentID Stream
Name
Jack 7 CSE
Janne 2 Mechanical
# df.loc[(df['列']>条件)]:按条件选取列满足一定条件的行。
df.loc[df["StudentID"]>=2,["Stream","AdmissionDate"]]
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

Stream AdmissionDate
Name
Jack CSE 2021-01-25
Mohan Civil 2021-01-20
Janne Mechanical 2021-01-18
Lucky CSE 2021-01-17
Abhinav IT 2021-01-17
Danny EEE 2021-01-21
# df.loc[行1:行2,列1:列2]:按列名选取连续的列。冒号前后留空代表开口。
df.loc["Jack":"Janne","AdmissionDate":"StudentID"]
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

AdmissionDate StudentID
Name
Jack 2021-01-25 7
Shyam 2021-01-22 1
Mohan 2021-01-20 3
Janne 2021-01-18 2

3.2 iloc索引器

iloc索引器与loc索引器的使用几乎相同,唯一不同的是,iloc索引器中只能使用原始索引,不能使用自定义索引。

注意:原始索引初值从0开始,切片前闭后开。自定义索引切片为闭区间

df.iloc[1:3,1:2]
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3c pre>\3c code>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

StudentID
Name
Shyam 1
Mohan 3
带步长的索引
df.iloc[::2]

【python-数据分析】pandas数据提取的更多相关文章

  1. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  2. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  3. python数据分析笔记——数据加载与整理]

    [ python数据分析笔记——数据加载与整理] https://mp.weixin.qq.com/s?__biz=MjM5MDM3Nzg0NA==&mid=2651588899&id ...

  4. Python之pandas数据加载、存储

    Python之pandas数据加载.存储 0. 输入与输出大致可分为三类: 0.1 读取文本文件和其他更好效的磁盘存储格式 2.2 使用数据库中的数据 0.3 利用Web API操作网络资源 1. 读 ...

  5. Python数据分析-Pandas(Series与DataFrame)

    Pandas介绍: pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. Pandas的主要功能: 1)具备对其功能的数据结构DataFrame.Series 2)集成时间序 ...

  6. python 数据分析--pandas

    接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...

  7. Python数据分析Pandas库方法简介

    Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...

  8. Python数据分析_Pandas01_数据框的创建和选取

    主要内容: 创建数据表 查看数据表 数据表索引.选取部分数据 通过标签选取.loc 多重索引选取 位置选取.iloc 布尔索引 Object Creation 新建数据 用list建series序列 ...

  9. Python数据分析 Pandas模块 基础数据结构与简介(一)

    pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二 ...

  10. Python数据分析Pandas库之熊猫(10分钟二)

    pandas 10分钟教程(二) 重点发法 分组 groupby('列名') groupby(['列名1','列名2',.........]) 分组的步骤 (Splitting) 按照一些规则将数据分 ...

随机推荐

  1. DEAT NOTE

    动漫 评分/10 评价 进击的巨人 10 献出心脏! Re:从零开始的异世界生活 10 蕾姆蕾姆!!! 反叛的鲁鲁修 10 算无遗策鲁鲁修 末日时在做什么?... 9 谁还不是个珂学家 东京食尸鬼 9 ...

  2. 记录uniapp上传图片转base64

    // 图片转base64 imageToBase64() { return new Promise((reslove, reject) => { uni.getFileSystemManager ...

  3. 单片机的主程序中为什么都要加一个while(1)?

    *** * C51 为什么都要加一个while(1)?****** while(1)的作用: while(1) 是一个死循环 为了不让代码继续向下执行. 单片机中使用while(1),大部分:为了防止 ...

  4. .NET 响应式编程 System.Reactive 系列文章(三):Subscribe 和 IDisposable 的深入理解

    .NET 响应式编程 System.Reactive 系列文章(三):Subscribe 和 IDisposable 的深入理解 引言:为什么理解 Subscribe 和 IDisposable 很重 ...

  5. Golang-编译和工具链12

    http://c.biancheng.net/golang/build/ go build命令(go语言编译命令)完全攻略 Go语言的编译速度非常快.Go 1.9 版本后默认利用Go语言的并发特性进行 ...

  6. 配置教程-jdk-tomcat-maven

    二.下载并安装JDK 选择一个适合自己的JDK版本下载并安装即可,具体流程不详述. 二.环境变量配置 1.右键桌面上"我的电脑">>"属性",在弹出 ...

  7. iptables使用详解(示例如何屏蔽docker 暴露的端口)

    [场景]搭建了一台CentOS虚拟机,并在上面搭了DOCKER,然后再DOCKER中安装Mysql.但只要将网络端口映射到宿主机上,那么外部网络就可以直接访问该数据.为此,我们需要使用防火墙(暂且不考 ...

  8. ctfshow--红包一 ob混淆

    上来是一段混淆的ob混淆的js代码,还会有个setinterval无限debugger反调试 点击查看代码 function _0x51ba() { const _0x4b06d7 = ['paddi ...

  9. HTTPS 证书自动化运维:基础知识与重要性

    简介: 随着互联网的飞速发展和网络安全威胁的日益增多,HTTPS(HyperText Transfer Protocol Secure)已经成为保护网站和用户数据安全的标准协议.HTTPS 证书的管理 ...

  10. HPC云化部署的优势和挑战

    本文分享自天翼云开发者社区<HPC云化部署的优势和挑战> 作者:土豆炒肉丝 HPC云化部署指的是将高性能计算(HPC)工作负载部署在云计算平台上,这种方式带来了一些明显的优势,但同时也面临 ...