题目描述

现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。

但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。

我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。

输入输出格式

输入格式:

第1行:N, M (0<=N<=100, 0<=M<=500)

第2行:W1, W2, ... Wi, ..., Wn (0<=Wi<=M )

第3行:V1, V2, ..., Vi, ..., Vn (0<=Vi<=1000 )

第4行:D1, D2, ..., Di, ..., Dn (0<=Di<=N, Di≠i )

输出格式:

一个整数,代表最大价值

思路:

望过去满眼的树形DP

和前面写的选课一模一样,只是cost需要输入

但很显然,你会这样

为什么呢?

后来想了半天,才发现

如果1依赖于2,2依赖于2,3依赖于1的化,这几个个点其实也能选,不过要选得一起选

所以,我们要用tarjan来缩点

把所有满足上图关系的点变为一个新点,并且与0连边即可

Q:环套树怎么办?

因为一个点只唯一依赖另一个点,所以入边一定为1

所以一定是环到树,不可能树到环,所以缩点没问题

懒了一下,用了stl

代码:

// luogu-judger-enable-o2
#include<iostream>
#include<stack>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#define rii register int i
#define rij register int j
#define rik register int k
using namespace std;
const int N=;const int M=;
struct E{
int to,nxt;
}ed[N<<];
int H[N<<],cnt;
stack<int>sta;
bool ins[N];
int dp[N][M],v[N],w[N],d[N];
int tot,dfn[N],low[N];
int num,col[N],fv[N],fw[N];
int n,m,rd[N];
void add(int x,int y)
{
cnt++;
ed[cnt].to=y;
ed[cnt].nxt=H[x];
H[x]=cnt;
return;
}
void read(int &in)
{
int x=,f=;
char ch;
for(ch=getchar();(ch<''||ch>'')&&ch!='-';ch=getchar());
if(ch=='-')
{
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=(x<<)+(x<<)+ch-'';
ch=getchar();
}
in=x*f;
return;
}
void tarjan(int x)
{
dfn[x]=low[x]=++tot;
ins[x]=true;sta.push(x);
int t,k;
for(rii=H[x];i;i=ed[i].nxt)
{
t=ed[i].to;
if(!dfn[t])
{
tarjan(t);
low[x]=min(low[x],low[t]);
}
else if(ins[t])
{
low[x]=min(low[x],dfn[t]);
}
}
if(low[x]==dfn[x])
{
num++;
do
{
k=sta.top();
sta.pop();
col[k]=num;
fw[num]+=w[k];
fv[num]+=v[k];
ins[k]=false;
}
while(k!=x);
}
return;
}
void dfs(int x)
{
for(rii=fw[x];i<=m;i++)
{
dp[x][i]=fv[x];
}
int t;
for(rii=H[x];i;i=ed[i].nxt)
{
t=ed[i].to;
dfs(t);
for(rij=m-fw[x];j>=;j--)
{
for(rik=;k<=j;k++)
{
dp[x][j+fw[x]]=max(dp[x][j+fw[x]],dp[x][j+fw[x]-k]+dp[t][k]);
}
}
}
return;
}
int main()
{
// freopen("software.in","r",stdin);
// freopen("software.out","w",stdout);
read(n);
read(m);
for(rii=;i<=n;i++)
{
read(w[i]);
}
for(rii=;i<=n;i++)
{
read(v[i]);
}
for(rii=;i<=n;i++)
{
read(d[i]);
if(d[i])
{
add(d[i],i);
}
}
for(rii=;i<=n;i++)
{
if(!dfn[i])
{
tarjan(i);
}
}
memset(H,,sizeof(H));
cnt=;
for(rii=;i<=n;i++)
{
if(col[i]!=col[d[i]]&&d[i])
{
add(col[d[i]],col[i]);
rd[col[i]]++;
}
}
for(rii=;i<=num;i++)
{
if(!rd[i])
{
add(num+,i);
}
dfs(num+);
}
printf("%d\n",dp[num+][m]);
return ;
}
 // luogu-judger-enable-o2
#include<iostream>
#include<stack>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#define rii register int i
#define rij register int j
#define rik register int k
using namespace std;
const int N=;const int M=;
struct E{
int to,nxt;
}ed[N<<];
int H[N<<],cnt;
stack<int>sta;
bool ins[N];
int dp[N][M],v[N],w[N],d[N];
int tot,dfn[N],low[N];
int num,col[N],fv[N],fw[N];
int n,m,rd[N];
void add(int x,int y)
{
cnt++;
ed[cnt].to=y;
ed[cnt].nxt=H[x];
H[x]=cnt;
return;
}
void read(int &in)
{
int x=,f=;
char ch;
for(ch=getchar();(ch<''||ch>'')&&ch!='-';ch=getchar());
if(ch=='-')
{
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=(x<<)+(x<<)+ch-'';
ch=getchar();
}
in=x*f;
return;
}
void tarjan(int x)
{
dfn[x]=low[x]=++tot;
ins[x]=true;sta.push(x);
int t,k;
for(rii=H[x];i;i=ed[i].nxt)
{
t=ed[i].to;
if(!dfn[t])
{
tarjan(t);
low[x]=min(low[x],low[t]);
}
else if(ins[t])
{
low[x]=min(low[x],dfn[t]);
}
}
if(low[x]==dfn[x])
{
num++;
do
{
k=sta.top();
sta.pop();
col[k]=num;
fw[num]+=w[k];
fv[num]+=v[k];
ins[k]=false;
}
while(k!=x);
}
return;
}
void dfs(int x)
{
for(rii=fw[x];i<=m;i++)
{
dp[x][i]=fv[x];
}
int t;
for(rii=H[x];i;i=ed[i].nxt)
{
t=ed[i].to;
dfs(t);
for(rij=m-fw[x];j>=;j--)
{
for(rik=;k<=j;k++)
{
dp[x][j+fw[x]]=max(dp[x][j+fw[x]],dp[x][j+fw[x]-k]+dp[t][k]);
}
}
}
return;
}
int main()
{
// freopen("software.in","r",stdin);
// freopen("software.out","w",stdout);
read(n);
read(m);
for(rii=;i<=n;i++)
{
read(w[i]);
}
for(rii=;i<=n;i++)
{
read(v[i]);
}
for(rii=;i<=n;i++)
{
read(d[i]);
if(d[i])
{
add(d[i],i);
}
}
for(rii=;i<=n;i++)
{
if(!dfn[i])
{
tarjan(i);
}
}
memset(H,,sizeof(H));
cnt=;
for(rii=;i<=n;i++)
{
if(col[i]!=col[d[i]]&&d[i])
{
add(col[d[i]],col[i]);
rd[col[i]]++;
}
}
for(rii=;i<=num;i++)
{
if(!rd[i])
{
add(num+,i);
}
dfs(num+);
}
printf("%d\n",dp[num+][m]);
return ;

[HAOI2010]软件安装(树形背包,tarjan缩点)的更多相关文章

  1. BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  2. HAOI2010软件安装(树形背包)

    HAOI2010软件安装(树形背包) 题意 有n个物品,每个物品最多会依赖一个物品,但一个物品可以依赖于一个不独立(依赖于其它物品)的物品,且可能有多个物品依赖一个物品,并且依赖关系可能形成一个环.现 ...

  3. 【BZOJ2427】[HAOI2010]软件安装 Tarjan+树形背包

    [BZOJ2427][HAOI2010]软件安装 Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为 ...

  4. bzoj 2427 [HAOI2010]软件安装 Tarjan缩点+树形dp

    [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2029  Solved: 811[Submit][Status][Dis ...

  5. Tarjan+树形DP【洛谷P2515】[HAOI2010]软件安装

    [洛谷P2515][HAOI2010]软件安装 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得 ...

  6. [HAOI2010]软件安装(Tarjan,树形dp)

    [HAOI2010]软件安装 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可 ...

  7. BZOJ_2427_[HAOI2010]软件安装_tarjan+树形DP

    BZOJ_2427_[HAOI2010]软件安装_tarjan+树形DP 题意: 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁 ...

  8. [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1987  Solved: 791[Submit][Statu ...

  9. bzoj2427:[HAOI2010]软件安装(Tarjan+tree_dp)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1053  Solved: 424[Submit][Statu ...

  10. 【BZOJ2427】[HAOI2010]软件安装(动态规划,Tarjan)

    [BZOJ2427][HAOI2010]软件安装(动态规划,Tarjan) 题面 BZOJ 洛谷 题解 看到这类题目就应该要意识到依赖关系显然是可以成环的. 注意到这样一个性质,依赖关系最多只有一个, ...

随机推荐

  1. 1229:密码截获----java

    题目描述 Catcher是MCA国的情报员,他工作时发现敌国会用一些对称的密码 进行通信,比如像这些ABBA,ABA,A,123321,但是他们有时会在开始或结束时加入一些无关的字符以防止别国破解.比 ...

  2. POI Excel解析

    Maven 引入POI <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi&l ...

  3. struts2的基本配置

    1.package标签下主要的点在namespace和name,extend上 extend 一般继承自struts-default.xml下,继承其拦截器及一些功能,这个已在本人的拦截器一文中有讲到 ...

  4. BZOJ4010: [HNOI2015]菜肴制作(拓扑排序 贪心)

    题意 题目链接 Sol 震惊,HNOI竟出NOI原题 直接在反图上贪心一下. // luogu-judger-enable-o2 // luogu-judger-enable-o2 #include& ...

  5. 【转载】win7mysql5.7.18免安装配置教程

    闲着没事,装个mysql试试,小编以前都是用的linux,感觉mysql安装就是傻瓜式操作啊,第一次在windows系统上装,感觉出了很多问题,现在将整个过程分享给大家,希望大家在安装的时候少走弯路. ...

  6. Java JSONArray的封装与解析

    package com.kigang.test; import net.sf.json.JSONArray; import net.sf.json.JSONObject; import java.ut ...

  7. Flask入门 flask结构 url_for 重定向(一)

    Flask入门(一) 1 安装虚拟环境Mac,linux sudo pip install virtualenv ​ ubuntu系统 sudo apt-get install python-virt ...

  8. HCNA修改OSPF基准带宽

    1.拓扑图 2.R1配置ip开启OSPF The device is running! <Huawei>sysEnter system view, return user view wit ...

  9. 源码安装mysql,及主从同步

    源码安装mysql [可选] 如果用源码安装cmake软件: cd /home/oldboy/tools/ tar xf cmake-.tar.gz cd cmake- ./configure #CM ...

  10. expdp/impdp使用sysdba权限迁移数据

    expdp 'userid="/ as sysdba"' directory=DATA_PUMP_DIR full=y logfile=fullexp.log estimate_o ...