codeforces 609E Minimum spanning tree for each edge
2 seconds
256 megabytes
standard input
standard output
Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.
For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).
The weight of the spanning tree is the sum of weights of all edges included in spanning tree.
First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.
Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.
Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.
The edges are numbered from 1 to m in order of their appearing in input.
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
9
8
11
8
8
8
9
保证某条边e存在的MST就是普通Kruskal把e优先到了最前面。
先求一遍MST,如果e不再MST上,是因为形成了环,把环上除了e的最大权边去掉就好了。
(以前的LCA:用ST来RMQ,查询O(1)
(向祖先结点倍增其实和ST差不多,查询O(logn),维护信息灵活
(一开始想的是树剖,复杂度稍高
#include<bits/stdc++.h>
using namespace std; typedef long long ll; const int N = 2e5+, M = N*; int pa[N], rak[N];
int fd(int x){ return pa[x] ? pa[x] = fd(pa[x]) : x; }
bool unite(int x,int y)
{
int a = fd(x), b = fd(y);
if(a == b) return false;
if(rak[a] < rak[b]){
pa[a] = b;
}
else {
pa[b] = a;
if(rak[a] == rak[b]) rak[a]++;
}
return true;
} int fro[N], to[N], we[N]; int hd[N];
int nx[M], ver[M], wei[M];
int ec; void add_e(int u,int v,int w)
{
ver[++ec] = v;
wei[ec] = w;
nx[ec] = hd[u];
hd[u] = ec;
} int n, m;
int *cmp_c;
bool cmp_id(int i,int j){ return cmp_c[i] < cmp_c[j]; } int r[N];
ll kruskal()
{
ll re = ;
int i,j;
for(i = ; i <= m; i++) r[i] = i;
cmp_c = we;
sort(r+, r + + m, cmp_id);
//ec = 0;
for(i = ; i <= m; i++){
j = r[i];
if(unite(fro[j],to[j])){
add_e(fro[j],to[j],we[j]);
add_e(to[j],fro[j],we[j]);
re += we[j];
we[j] = ;
}
}
return re;
} const int LOG = ; int fa[N][LOG], mx[N][LOG];
int dep[N]; void dfs(int u,int f = ,int fw = ,int d = )
{
fa[u][] = f;
mx[u][] = fw;
dep[u] = d;
for(int i = hd[u]; i; i = nx[i]) {
int v = ver[i];
if(v == f) continue;
dfs(v,u,wei[i],d+);
}
} int lg; int queryMx(int u,int v)
{
int re = , i;
if(dep[u] < dep[v]) swap(u,v);
for(i = lg; i >= ; i--) if(dep[u] - (<<i) >= dep[v]){
re = max(re,mx[u][i]);
u = fa[u][i];
}
if(u == v) return re;
for(i = lg; i >= ; i--) if(fa[u][i] != fa[v][i]){
re = max(re,max(mx[u][i],mx[v][i]));
u = fa[u][i];
v = fa[v][i];
}
return max(re,max(mx[u][],mx[v][]));
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
//cout<<log2(N);
scanf("%d%d",&n,&m);
int i,j;
for(i = ; i <= m; i++){
scanf("%d%d%d",fro+i,to+i,we+i);
}
ll mst = kruskal(); dfs();
lg = ceil(log2(n));
for(j = ; j <= lg; j++){
for(i = ; i <= n; i++) if(fa[i][j-]){
fa[i][j] = fa[fa[i][j-]][j-];
mx[i][j] = max(mx[i][j-],mx[fa[i][j-]][j-]);
}
}
for(i = ; i <= m; i++) {
printf("%I64d\n",we[i]?mst + we[i] - queryMx(fro[i],to[i]):mst);
}
return ;
}
codeforces 609E Minimum spanning tree for each edge的更多相关文章
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
- codeforces 609E. Minimum spanning tree for each edge 树链剖分
题目链接 给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值. 先将最小生成树求出来, 把树边都标记. 然后对标记的边的两个端点, 我们add(u, v), ...
- Educational Codeforces Round 3 E (609E) Minimum spanning tree for each edge
题意:一个无向图联通中,求包含每条边的最小生成树的值(无自环,无重边) 分析:求出这个图的最小生成树,用最小生成树上的边建图 对于每条边,不外乎两种情况 1:该边就是最小生成树上的边,那么答案显然 2 ...
- cf 609E.Minimum spanning tree for each edge
最小生成树,lca(树链剖分(太难搞,不会写)) 问存在这条边的最小生成树,2种情况.1.这条边在原始最小生成树上.2.加上这条半形成一个环(加上),那么就找原来这条边2端点间的最大边就好(减去).( ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
随机推荐
- Map接口常用实现类学习
HashMap 1.6的HashMap:数组加单向链表结构 最重要的内部类Entry,全类名是java.util.HashMap.Entry,是个静态类,实现了Map.Entry接口.HashMap. ...
- python 管理多版本之pyenv
一, [root@management ~]# pyenv install -listAvailable versions: 3.3.0 3.3.1 3.3.2 3.3.3 3.3.4 3 ...
- AWS Intro - Static IP with ssh
Notes: Please config static ip when launch instance. Because change dynamic public ip to static ip, ...
- HTML练习 | 百度搜索框
<!DOCTYPE html> <head> <title>百度首页</title> <style> .logo{ background:u ...
- Oracle 基础系列之1.1 oracle的安装
一. 1.以下是安装Oracle的一些硬件上的条件: (1).操作系统最后是windows2000(也就是服务器版的操作系统) (2).内存最好在1G以上,当然越大越好(因为Oracle服务启动就要消 ...
- Django 入门项目案例开发(上)
关注微信公众号:FocusBI 查看更多文章:加QQ群:808774277 获取学习资料和一起探讨问题. Django 入门案例开发(中) http://www.cnblogs.com/focusBI ...
- K&R C风格函数
前些天在看getopt源码, 一种前所未见的函数定义方法 int getopt(nargc, nargv, ostr) int nargc; char * const nargv[]; const c ...
- Python之装饰器、迭代器和生成器
在学习python的时候,三大“名器”对没有其他语言编程经验的人来说,应该算是一个小难点,本次博客就博主自己对装饰器.迭代器和生成器理解进行解释. 为什么要使用装饰器 什么是装饰器?“装饰”从字面意思 ...
- JS常用的设计模式(4)——适配器模式
去年年前当时正在开发dev.qplus.com, 有个存储应用分类id的js文件, 分类id的结构最开始设计的比较笨重. 于是我决定重构它. 我把它定义成一个json树的形式, 大概是这样: var ...
- NPOI之C#下载Excel
Java中这个类库叫POI,C#中叫NPOI,很多从Java一直到.Net平台的类库为了区别大部分都是在前面加个N,比如Hibernate和NHibernate. npoi下载地址 一.使用NPOI下 ...