BZOJ 2333 SCOI2011 棘手的操作 并查集+可并堆
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2333
。。题意概述就不写了,各位老爷如果是看着玩的可以去搜一下,如果是做题找来的也知道题干的。实际上是题干无法缩减懒得复制ORZ
首先处理一下集合的合并和单点值查询的问题。使用并查集,记录两个数组w,d:w记录对这个点单点操作的值,d记录对这个点代表的集合进行的操作累计的值,对于每个点find的时候把这个点到代表元路径上的点的d(不包括代表元)的d加起来更新这个点的d,每一次查询某个点的当前值的时候就先find就可以直接用w+d+代表元的d(特判这个点是不是代表元)回答。特别注意为了保证正确性在merge的时候要把双方中的某一个点建立成另外一个新点,原来两个点的pa是这个新点。这样值的集合修改和查询就解决。
接下来是最大值的问题。这里用的是可并堆。开两个可并堆,一个维护每个集合(称为hp1),另一个维护每个集合中的最大值(称为hp2)。有点lazy的思想,因为单点修改只会影响这个点的值,所以说直接在hp1中调整这个点的位置(注意到可能是向下,也可能是向上),然后看此集合中最大值对应的元素编号是否改变。改变的话就在hp2中删掉原来的最大元素编号加入新的,否则如果修改的这个点就是其集合中的最大值元素就在hp2中调整位置;如果是集合修改的话思路同单点直接调整被修改集合中最大值在hp2中的位置;对于所有值修改的操作直接单独记录一个数输出的时候加上就可以了(不影响单调性)。
这样调整之后任意时刻可并堆中的所有元素的位置都是正确的,正确性得以保证(虽然这个自己yy出来的东西代码有点长?)
最后说一件事情,自己乱搞数据结构的时候一定注意。。。。。指针要改完改对。。。。。
细节参见代码。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
using namespace std;
const int MAXN=; int N,Q,A[MAXN];
struct union_find{
static const int maxn=;
int pa[maxn<<],stk[maxn<<],d[maxn<<],id[maxn<<],w[maxn<<],stk_top,np,ADD;
union_find(){ np=stk_top=ADD=; };
int newnode(int x) { w[++np]=x,pa[np]=np,d[np]=; return np; }
void initial(int n,int *a){
for(int i=;i<=n;i++) pa[i]=id[i]=i,w[i]=a[i],d[i]=;
np=n;
}
int find(int x)
{
while(pa[x]!=x) stk[++stk_top]=x,x=pa[x];
int rt=x,add=;
while(stk_top) x=stk[stk_top],add+=d[x],d[x]=add,pa[x]=rt,stk_top--;
return rt;
}
int val(int x) { find(x); return w[x]+d[x]+(pa[x]==x?:d[pa[x]])+ADD; }
bool judge(int x,int y) { return find(x)==find(y); }
void merge(int x,int y) { pa[find(x)]=pa[find(y)]=newnode(val(y)-ADD); }
}uf;
struct mergeable_heap{
static const int maxn=;
int chd[maxn][],fa[maxn];
void initial(int n) { for(int i=;i<=n;i++) chd[i][]=chd[i][]=fa[i]=; }
int val(int x) { return uf.val(uf.id[x]); }
void link(int x,int d,int y) { chd[x][d]=y,fa[y]=x; }
int root(int x) { while(fa[x]) x=fa[x]; return x; }
int merge(int A,int B)
{
if(!A||!B) return A+B;
if(val(A)<val(B)) swap(A,B);
link(A,,merge(chd[A][],B)); swap(chd[A][],chd[A][]);
return A;
}
void ins(int A,int B) { fa[A]=chd[A][]=chd[A][]=; merge(A,B); }
void del(int A)
{
if(A==root(A)) fa[merge(chd[A][],chd[A][])]=;
else{
int d=A==chd[fa[A]][];
link(fa[A],d,merge(chd[A][],chd[A][]));
}
}
int top(int x) { return val(root(x)); }
void rot(int x)
{
int p=fa[x],e=x==chd[p][];
int a=chd[x][],b=chd[x][],c=chd[p][e],d=fa[p];
link(p,,a); link(p,,b);
link(x,,e?p:c); link(x,,e?c:p);
link(d,chd[d][]==p,x);
}
void adjust(int x)
{
while(fa[x]&&val(x)>val(fa[x])) rot(x);
while(chd[x][]||chd[x][]){
int y;
if(!chd[x][]||!chd[x][]) y=chd[x][]?chd[x][]:chd[x][];
else y=val(chd[x][])>val(chd[x][])?chd[x][]:chd[x][];
if(val(y)<=val(x)) break;
rot(y);
}
}
}hp1,hp2; void _scanf(char &x)
{
x=getchar();
while(x!='U'&&x!='A'&&x!='F') x=getchar();
}
void data_in()
{
scanf("%d",&N);
for(int i=;i<=N;i++) scanf("%d",&A[i]);
scanf("%d",&Q);
}
void work()
{
uf.initial(N,A);
hp1.initial(N); hp2.initial(N);
for(int i=;i<N;i++)
hp2.merge(hp2.root(i),i+);
char op1; int op2,x,y,v,rx,ry;
for(int i=;i<=Q;i++){
_scanf(op1);
if(op1=='U'){
scanf("%d%d",&x,&y);
if(!uf.judge(uf.id[x],uf.id[y])){
rx=hp1.root(x),ry=hp1.root(y);
uf.merge(uf.id[x],uf.id[y]);
hp1.merge(rx,ry);
if(rx!=hp1.root(x)) hp2.del(rx); else hp2.del(ry);
}
}
else if(op1=='A'){
scanf("%d",&op2);
if(op2==){
scanf("%d%d",&x,&v);
rx=hp1.root(x);
uf.w[uf.id[x]]+=v; hp1.adjust(x);
if(rx!=hp1.root(x)){
int rt=max(hp2.fa[rx],max(hp2.chd[rx][],hp2.chd[rx][]));
hp2.del(rx); rt=hp2.root(rt);
hp2.ins(hp1.root(x),rt);
}
else if(rx==x) hp2.adjust(x);
}
else if(op2==){
scanf("%d%d",&x,&v);
uf.d[uf.find(uf.id[x])]+=v;
hp2.adjust(hp1.root(x));
}
else if(op2==) scanf("%d",&v),uf.ADD+=v;
}
else if(op1=='F'){
scanf("%d",&op2);
if(op2==) scanf("%d",&x),printf("%d\n",hp1.val(x));
else if(op2==) scanf("%d",&x),printf("%d\n",hp1.top(x));
else if(op2==) printf("%d\n",hp2.top(hp1.root()));
}
}
}
int main()
{
data_in();
work();
return ;
}
BZOJ 2333 SCOI2011 棘手的操作 并查集+可并堆的更多相关文章
- BZOJ 2333: [SCOI2011]棘手的操作
题目描述 真的是个很棘手的操作.. 注意每删除一个点,就需要clear一次. #include<complex> #include<cstdio> using namespac ...
- BZOJ 2333 [SCOI2011]棘手的操作 (可并堆)
码农题.. 很显然除了两个全局操作都能用可并堆完成 全局最大值用个multiset记录,每次合并时搞一搞就行了 注意使用multiset删除元素时 如果直接delete一个值,会把和这个值相同的所有元 ...
- BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set
https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...
- bzoj 2333 [SCOI2011]棘手的操作 —— 可并堆
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2333 稍微复杂,参考了博客:http://hzwer.com/5780.html 用 set ...
- 2333: [SCOI2011]棘手的操作[离线线段树]
2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2325 Solved: 909[Submit][Stat ...
- 2333: [SCOI2011]棘手的操作[写不出来]
2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1979 Solved: 772[Submit][Stat ...
- 2333: [SCOI2011]棘手的操作[我不玩了]
2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1979 Solved: 772[Submit][Stat ...
- 【BZOJ】2333: [SCOI2011]棘手的操作
http://www.lydsy.com/JudgeOnline/problem.php?id=2333 题意: 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i], ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
随机推荐
- 线程池的类型以及执行线程submit()和execute()的区别
就跟题目说的一样,本篇博客,本宝宝主要介绍两个方面的内容,其一:线程池的类型及其应用场景:其二:submit和execute的区别.那么需要再次重申的是,对于概念性的东西,我一般都是从网上挑选截取,再 ...
- 使用hibernate框架连接oracle数据库进行简单的增删改
初始化配置和session 关于配置文件这里就不在赘述了,假设配置文件配好后我们需要加载配置和sessionFactory,并获取session,因为每次进行增删改查时都需要session,所以封装成 ...
- pyqt5通过qt designer 设计方式连接多个UI图形界面
当我们通过pyqt开发时,eric6为我们提供了一个方便的工具:图形化的绘制UI工具--qtdesigner.我们可以通过它开发多个UI,然后利用信号-槽工具,将功能代码附着在上面.也可以将多个界面连 ...
- SHOPEX快递单号查询插件圆通V8.2专版
SHOPEX快递物流单号查询插件特色 本SHOPEX快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅急送快递.德邦物流.百世 ...
- Spark-源码-Spark-StartAll Master Worler启动流程
Spark start-all>> """Master启动流程""" Master类 class Master( host: S ...
- AB PLC 编程之状态机
AB的程序设计和西门子有点PLC不大一样,在AB中没有RS指令,所以主要用move指令来作步进.今天我们就用Move指令写个AB的程序,和西门子比,有哪些不同. 控制任务 很简单的一个状态机.初始步为 ...
- 基于GTID的MySQL主从复制#从原理到配置
GTID是一个基于原始mysql服务器生成的一个已经被成功执行的全局事务ID,它由服务器ID以及事务ID组合而成.这个全局事务ID不仅仅在原始服务器器上唯一,在所有存在主从关系 的mysql服务器上也 ...
- Python3爬虫(十一) 爬虫与反爬虫
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一.重要概念 二.爬虫反爬虫进化论
- (数据科学学习手札22)主成分分析法在Python与R中的基本功能实现
上一篇中我们详细介绍推导了主成分分析法的原理,并基于Python通过自编函数实现了挑选主成分的过程,而在Python与R中都有比较成熟的主成分分析函数,本篇我们就对这些方法进行介绍: R 在R的基础函 ...
- WPF DateTimePicker 和 TimeSpanPicker 控件发布
原文:WPF DateTimePicker 和 TimeSpanPicker 控件发布 根据http://datetimepickerwpf.codeplex.com/ 这个项目重构了一下代码设计了我 ...