BZOJ 2333 SCOI2011 棘手的操作 并查集+可并堆
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2333
。。题意概述就不写了,各位老爷如果是看着玩的可以去搜一下,如果是做题找来的也知道题干的。实际上是题干无法缩减懒得复制ORZ
首先处理一下集合的合并和单点值查询的问题。使用并查集,记录两个数组w,d:w记录对这个点单点操作的值,d记录对这个点代表的集合进行的操作累计的值,对于每个点find的时候把这个点到代表元路径上的点的d(不包括代表元)的d加起来更新这个点的d,每一次查询某个点的当前值的时候就先find就可以直接用w+d+代表元的d(特判这个点是不是代表元)回答。特别注意为了保证正确性在merge的时候要把双方中的某一个点建立成另外一个新点,原来两个点的pa是这个新点。这样值的集合修改和查询就解决。
接下来是最大值的问题。这里用的是可并堆。开两个可并堆,一个维护每个集合(称为hp1),另一个维护每个集合中的最大值(称为hp2)。有点lazy的思想,因为单点修改只会影响这个点的值,所以说直接在hp1中调整这个点的位置(注意到可能是向下,也可能是向上),然后看此集合中最大值对应的元素编号是否改变。改变的话就在hp2中删掉原来的最大元素编号加入新的,否则如果修改的这个点就是其集合中的最大值元素就在hp2中调整位置;如果是集合修改的话思路同单点直接调整被修改集合中最大值在hp2中的位置;对于所有值修改的操作直接单独记录一个数输出的时候加上就可以了(不影响单调性)。
这样调整之后任意时刻可并堆中的所有元素的位置都是正确的,正确性得以保证(虽然这个自己yy出来的东西代码有点长?)
最后说一件事情,自己乱搞数据结构的时候一定注意。。。。。指针要改完改对。。。。。
细节参见代码。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
using namespace std;
const int MAXN=; int N,Q,A[MAXN];
struct union_find{
static const int maxn=;
int pa[maxn<<],stk[maxn<<],d[maxn<<],id[maxn<<],w[maxn<<],stk_top,np,ADD;
union_find(){ np=stk_top=ADD=; };
int newnode(int x) { w[++np]=x,pa[np]=np,d[np]=; return np; }
void initial(int n,int *a){
for(int i=;i<=n;i++) pa[i]=id[i]=i,w[i]=a[i],d[i]=;
np=n;
}
int find(int x)
{
while(pa[x]!=x) stk[++stk_top]=x,x=pa[x];
int rt=x,add=;
while(stk_top) x=stk[stk_top],add+=d[x],d[x]=add,pa[x]=rt,stk_top--;
return rt;
}
int val(int x) { find(x); return w[x]+d[x]+(pa[x]==x?:d[pa[x]])+ADD; }
bool judge(int x,int y) { return find(x)==find(y); }
void merge(int x,int y) { pa[find(x)]=pa[find(y)]=newnode(val(y)-ADD); }
}uf;
struct mergeable_heap{
static const int maxn=;
int chd[maxn][],fa[maxn];
void initial(int n) { for(int i=;i<=n;i++) chd[i][]=chd[i][]=fa[i]=; }
int val(int x) { return uf.val(uf.id[x]); }
void link(int x,int d,int y) { chd[x][d]=y,fa[y]=x; }
int root(int x) { while(fa[x]) x=fa[x]; return x; }
int merge(int A,int B)
{
if(!A||!B) return A+B;
if(val(A)<val(B)) swap(A,B);
link(A,,merge(chd[A][],B)); swap(chd[A][],chd[A][]);
return A;
}
void ins(int A,int B) { fa[A]=chd[A][]=chd[A][]=; merge(A,B); }
void del(int A)
{
if(A==root(A)) fa[merge(chd[A][],chd[A][])]=;
else{
int d=A==chd[fa[A]][];
link(fa[A],d,merge(chd[A][],chd[A][]));
}
}
int top(int x) { return val(root(x)); }
void rot(int x)
{
int p=fa[x],e=x==chd[p][];
int a=chd[x][],b=chd[x][],c=chd[p][e],d=fa[p];
link(p,,a); link(p,,b);
link(x,,e?p:c); link(x,,e?c:p);
link(d,chd[d][]==p,x);
}
void adjust(int x)
{
while(fa[x]&&val(x)>val(fa[x])) rot(x);
while(chd[x][]||chd[x][]){
int y;
if(!chd[x][]||!chd[x][]) y=chd[x][]?chd[x][]:chd[x][];
else y=val(chd[x][])>val(chd[x][])?chd[x][]:chd[x][];
if(val(y)<=val(x)) break;
rot(y);
}
}
}hp1,hp2; void _scanf(char &x)
{
x=getchar();
while(x!='U'&&x!='A'&&x!='F') x=getchar();
}
void data_in()
{
scanf("%d",&N);
for(int i=;i<=N;i++) scanf("%d",&A[i]);
scanf("%d",&Q);
}
void work()
{
uf.initial(N,A);
hp1.initial(N); hp2.initial(N);
for(int i=;i<N;i++)
hp2.merge(hp2.root(i),i+);
char op1; int op2,x,y,v,rx,ry;
for(int i=;i<=Q;i++){
_scanf(op1);
if(op1=='U'){
scanf("%d%d",&x,&y);
if(!uf.judge(uf.id[x],uf.id[y])){
rx=hp1.root(x),ry=hp1.root(y);
uf.merge(uf.id[x],uf.id[y]);
hp1.merge(rx,ry);
if(rx!=hp1.root(x)) hp2.del(rx); else hp2.del(ry);
}
}
else if(op1=='A'){
scanf("%d",&op2);
if(op2==){
scanf("%d%d",&x,&v);
rx=hp1.root(x);
uf.w[uf.id[x]]+=v; hp1.adjust(x);
if(rx!=hp1.root(x)){
int rt=max(hp2.fa[rx],max(hp2.chd[rx][],hp2.chd[rx][]));
hp2.del(rx); rt=hp2.root(rt);
hp2.ins(hp1.root(x),rt);
}
else if(rx==x) hp2.adjust(x);
}
else if(op2==){
scanf("%d%d",&x,&v);
uf.d[uf.find(uf.id[x])]+=v;
hp2.adjust(hp1.root(x));
}
else if(op2==) scanf("%d",&v),uf.ADD+=v;
}
else if(op1=='F'){
scanf("%d",&op2);
if(op2==) scanf("%d",&x),printf("%d\n",hp1.val(x));
else if(op2==) scanf("%d",&x),printf("%d\n",hp1.top(x));
else if(op2==) printf("%d\n",hp2.top(hp1.root()));
}
}
}
int main()
{
data_in();
work();
return ;
}
BZOJ 2333 SCOI2011 棘手的操作 并查集+可并堆的更多相关文章
- BZOJ 2333: [SCOI2011]棘手的操作
题目描述 真的是个很棘手的操作.. 注意每删除一个点,就需要clear一次. #include<complex> #include<cstdio> using namespac ...
- BZOJ 2333 [SCOI2011]棘手的操作 (可并堆)
码农题.. 很显然除了两个全局操作都能用可并堆完成 全局最大值用个multiset记录,每次合并时搞一搞就行了 注意使用multiset删除元素时 如果直接delete一个值,会把和这个值相同的所有元 ...
- BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set
https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...
- bzoj 2333 [SCOI2011]棘手的操作 —— 可并堆
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2333 稍微复杂,参考了博客:http://hzwer.com/5780.html 用 set ...
- 2333: [SCOI2011]棘手的操作[离线线段树]
2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2325 Solved: 909[Submit][Stat ...
- 2333: [SCOI2011]棘手的操作[写不出来]
2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1979 Solved: 772[Submit][Stat ...
- 2333: [SCOI2011]棘手的操作[我不玩了]
2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1979 Solved: 772[Submit][Stat ...
- 【BZOJ】2333: [SCOI2011]棘手的操作
http://www.lydsy.com/JudgeOnline/problem.php?id=2333 题意: 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i], ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
随机推荐
- Struts2 第二讲 -- Struts2的入门
搭建struts2环境时,我们一般需要做以下几个步骤的工作: 第一步:创建javaweb工程(这个很废话有木有) 第二步:找到开发Struts2应用需要使用到的jar文件.(这个很白痴有没有) 到ht ...
- django写一个简单的登陆注册
要写这个,前提还是需要知道三个知识: 一个是urls.py,它是写我们的路由关系的,之前我写了通过wsgiref写一个简单的服务端,也用到了路由,就是 请求过来的url和视图函数的对应关系. 二是就是 ...
- Spring Boot2.4双数据源的配置
相较于单数据源,双数据源配置有时候在数据分库的时候可能更加有利 但是在参考诸多博客以及书籍(汪云飞的实战书)的时候,发现对于spring boot1.X是完全没问题的,一旦切换到spring boot ...
- sudo及visudo
sudo是一种权限管理机制,管理员可以授权普通用户去执行root的操作,而不需要知道root的密码,它依赖于/etc/sudoers这个文件,可以授权给哪个用户在哪个主机上能够以管理员的身份执行什么样 ...
- python的基本知识,range在python2.x中和python3.x中的区别
这些是最开始学习python时的笔记,今天整理一下,在这里记录一下. 各种基础代码解释 for key,item in enumerate(li): print(key,item) inp=input ...
- C语言实现二分查找
二分查找优势:比顺序查找更有效率 特点:元素按顺序排列 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include ...
- [ACM] POJ 2409 Let it Bead (Polya计数)
参考:https://blog.csdn.net/sr_19930829/article/details/38108871 #include <iostream> #include < ...
- 【Java】关于Spring框架的总结 (三)
前文对 Spring IoC 和 Spring AOP 的实现方法进行了整合.如果有不明白的或有质疑的地方可以评论出来,一起探讨问题,帮助别人也是帮助自己!本文探讨的中心主要放在 Spring 的注解 ...
- java 第五章 方法定义及调用
1.方法的定义 什么是方法 方法是完成某个功能的一组语句,通常将常用的功能写成一个方法 方法的定义 [访问控制符] [修饰符] 返回值类型 方法名( (参数类型 形式参数, ,参数类型 形式参数, , ...
- Git的使用规范(二)
今天,我们来介绍一下git的一些命令行,来帮我们后面可以面对一些情况的时候,我们可以有一些解决的方法 1.git查看历史记录最全的命令行 git log --pretty=raw 2.对于一下的几个情 ...