BZOJ 2333 SCOI2011 棘手的操作 并查集+可并堆
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2333
。。题意概述就不写了,各位老爷如果是看着玩的可以去搜一下,如果是做题找来的也知道题干的。实际上是题干无法缩减懒得复制ORZ
首先处理一下集合的合并和单点值查询的问题。使用并查集,记录两个数组w,d:w记录对这个点单点操作的值,d记录对这个点代表的集合进行的操作累计的值,对于每个点find的时候把这个点到代表元路径上的点的d(不包括代表元)的d加起来更新这个点的d,每一次查询某个点的当前值的时候就先find就可以直接用w+d+代表元的d(特判这个点是不是代表元)回答。特别注意为了保证正确性在merge的时候要把双方中的某一个点建立成另外一个新点,原来两个点的pa是这个新点。这样值的集合修改和查询就解决。
接下来是最大值的问题。这里用的是可并堆。开两个可并堆,一个维护每个集合(称为hp1),另一个维护每个集合中的最大值(称为hp2)。有点lazy的思想,因为单点修改只会影响这个点的值,所以说直接在hp1中调整这个点的位置(注意到可能是向下,也可能是向上),然后看此集合中最大值对应的元素编号是否改变。改变的话就在hp2中删掉原来的最大元素编号加入新的,否则如果修改的这个点就是其集合中的最大值元素就在hp2中调整位置;如果是集合修改的话思路同单点直接调整被修改集合中最大值在hp2中的位置;对于所有值修改的操作直接单独记录一个数输出的时候加上就可以了(不影响单调性)。
这样调整之后任意时刻可并堆中的所有元素的位置都是正确的,正确性得以保证(虽然这个自己yy出来的东西代码有点长?)
最后说一件事情,自己乱搞数据结构的时候一定注意。。。。。指针要改完改对。。。。。
细节参见代码。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
using namespace std;
const int MAXN=; int N,Q,A[MAXN];
struct union_find{
static const int maxn=;
int pa[maxn<<],stk[maxn<<],d[maxn<<],id[maxn<<],w[maxn<<],stk_top,np,ADD;
union_find(){ np=stk_top=ADD=; };
int newnode(int x) { w[++np]=x,pa[np]=np,d[np]=; return np; }
void initial(int n,int *a){
for(int i=;i<=n;i++) pa[i]=id[i]=i,w[i]=a[i],d[i]=;
np=n;
}
int find(int x)
{
while(pa[x]!=x) stk[++stk_top]=x,x=pa[x];
int rt=x,add=;
while(stk_top) x=stk[stk_top],add+=d[x],d[x]=add,pa[x]=rt,stk_top--;
return rt;
}
int val(int x) { find(x); return w[x]+d[x]+(pa[x]==x?:d[pa[x]])+ADD; }
bool judge(int x,int y) { return find(x)==find(y); }
void merge(int x,int y) { pa[find(x)]=pa[find(y)]=newnode(val(y)-ADD); }
}uf;
struct mergeable_heap{
static const int maxn=;
int chd[maxn][],fa[maxn];
void initial(int n) { for(int i=;i<=n;i++) chd[i][]=chd[i][]=fa[i]=; }
int val(int x) { return uf.val(uf.id[x]); }
void link(int x,int d,int y) { chd[x][d]=y,fa[y]=x; }
int root(int x) { while(fa[x]) x=fa[x]; return x; }
int merge(int A,int B)
{
if(!A||!B) return A+B;
if(val(A)<val(B)) swap(A,B);
link(A,,merge(chd[A][],B)); swap(chd[A][],chd[A][]);
return A;
}
void ins(int A,int B) { fa[A]=chd[A][]=chd[A][]=; merge(A,B); }
void del(int A)
{
if(A==root(A)) fa[merge(chd[A][],chd[A][])]=;
else{
int d=A==chd[fa[A]][];
link(fa[A],d,merge(chd[A][],chd[A][]));
}
}
int top(int x) { return val(root(x)); }
void rot(int x)
{
int p=fa[x],e=x==chd[p][];
int a=chd[x][],b=chd[x][],c=chd[p][e],d=fa[p];
link(p,,a); link(p,,b);
link(x,,e?p:c); link(x,,e?c:p);
link(d,chd[d][]==p,x);
}
void adjust(int x)
{
while(fa[x]&&val(x)>val(fa[x])) rot(x);
while(chd[x][]||chd[x][]){
int y;
if(!chd[x][]||!chd[x][]) y=chd[x][]?chd[x][]:chd[x][];
else y=val(chd[x][])>val(chd[x][])?chd[x][]:chd[x][];
if(val(y)<=val(x)) break;
rot(y);
}
}
}hp1,hp2; void _scanf(char &x)
{
x=getchar();
while(x!='U'&&x!='A'&&x!='F') x=getchar();
}
void data_in()
{
scanf("%d",&N);
for(int i=;i<=N;i++) scanf("%d",&A[i]);
scanf("%d",&Q);
}
void work()
{
uf.initial(N,A);
hp1.initial(N); hp2.initial(N);
for(int i=;i<N;i++)
hp2.merge(hp2.root(i),i+);
char op1; int op2,x,y,v,rx,ry;
for(int i=;i<=Q;i++){
_scanf(op1);
if(op1=='U'){
scanf("%d%d",&x,&y);
if(!uf.judge(uf.id[x],uf.id[y])){
rx=hp1.root(x),ry=hp1.root(y);
uf.merge(uf.id[x],uf.id[y]);
hp1.merge(rx,ry);
if(rx!=hp1.root(x)) hp2.del(rx); else hp2.del(ry);
}
}
else if(op1=='A'){
scanf("%d",&op2);
if(op2==){
scanf("%d%d",&x,&v);
rx=hp1.root(x);
uf.w[uf.id[x]]+=v; hp1.adjust(x);
if(rx!=hp1.root(x)){
int rt=max(hp2.fa[rx],max(hp2.chd[rx][],hp2.chd[rx][]));
hp2.del(rx); rt=hp2.root(rt);
hp2.ins(hp1.root(x),rt);
}
else if(rx==x) hp2.adjust(x);
}
else if(op2==){
scanf("%d%d",&x,&v);
uf.d[uf.find(uf.id[x])]+=v;
hp2.adjust(hp1.root(x));
}
else if(op2==) scanf("%d",&v),uf.ADD+=v;
}
else if(op1=='F'){
scanf("%d",&op2);
if(op2==) scanf("%d",&x),printf("%d\n",hp1.val(x));
else if(op2==) scanf("%d",&x),printf("%d\n",hp1.top(x));
else if(op2==) printf("%d\n",hp2.top(hp1.root()));
}
}
}
int main()
{
data_in();
work();
return ;
}
BZOJ 2333 SCOI2011 棘手的操作 并查集+可并堆的更多相关文章
- BZOJ 2333: [SCOI2011]棘手的操作
题目描述 真的是个很棘手的操作.. 注意每删除一个点,就需要clear一次. #include<complex> #include<cstdio> using namespac ...
- BZOJ 2333 [SCOI2011]棘手的操作 (可并堆)
码农题.. 很显然除了两个全局操作都能用可并堆完成 全局最大值用个multiset记录,每次合并时搞一搞就行了 注意使用multiset删除元素时 如果直接delete一个值,会把和这个值相同的所有元 ...
- BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set
https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...
- bzoj 2333 [SCOI2011]棘手的操作 —— 可并堆
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2333 稍微复杂,参考了博客:http://hzwer.com/5780.html 用 set ...
- 2333: [SCOI2011]棘手的操作[离线线段树]
2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2325 Solved: 909[Submit][Stat ...
- 2333: [SCOI2011]棘手的操作[写不出来]
2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1979 Solved: 772[Submit][Stat ...
- 2333: [SCOI2011]棘手的操作[我不玩了]
2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1979 Solved: 772[Submit][Stat ...
- 【BZOJ】2333: [SCOI2011]棘手的操作
http://www.lydsy.com/JudgeOnline/problem.php?id=2333 题意: 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i], ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
随机推荐
- MarkDown/Html在线转换(支持代码高亮,可复制到微信公众号、今日头条)
MarkDown/Html在线转换能够将md渲染成html并且能保持代码高亮,可以方便的复制待格式的html粘贴到微信公众号,CSDN,简书,博客园,开源中国等. 扫码体验在线助手小程序 我是java ...
- 节约内存:Instagram的Redis实践
Instagram可以说是网拍App的始祖级应用,也是当前最火热的拍照App之一,Instagram的照片数量已经达到3亿,而在Instagram里,我们需要知道每一张照片的作者是谁,下面就是Inst ...
- JSONP 通用函数封装
function jsonp({url, params, callback}) { return new Promise((resolve, reject) => { let script = ...
- js面向对象轮播图写法
;;} ,,,;} ]; ].].; ){ ; ; }) } Banner.protot ...
- 【PTA 天梯赛训练】电话聊天狂人(简单map)
输入格式: 输入首先给出正整数N(≤10^5),为通话记录条数.随后N行,每行给出一条通话记录.简单起见,这里只列出拨出方和接收方的11位数字构成的手机号码,其中以空格分隔. 输出格式: 在一行中给出 ...
- SQL:检索数据-基本检索
检索数据 1.select语句 增删改查四大操作之"查",即检索: 一般包括:what,where:查什么,从哪里选择 2.检索单个列 例:想从products表中检索名为prod ...
- Linux入门-第四周
1.查找/var目录下不属于root.lp.gdm的所有文件 find命令:实时查找工具,通过指定路径完成文件查找,其特点查找速度略慢,可以精确查找,实时查找,可以只搜索用户具备读取和执行权限的目录 ...
- 使用source命令解决mysql导入乱码问题
设定编码格式:mysql -u root -p --default-character-set=utf8 use dbname source /root/newsdata.sql
- ffmpeg安装配置以及库调用
参考https://blog.csdn.net/jayson_jang/article/details/52329508 cd ffmpeg ./configure --enable-shared - ...
- (数据科学学习手札25)sklearn中的特征选择相关功能
一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常 ...