众所周知,在mysql里的后通配符可以使用索引查找,前通配查询却无法使用到索引,即使是使用到了索引,也是使用了索引全扫描,效率依然不高,再MySQL5.7之前,一直都没有好的办法解决,但是到了MySQL5.7,自从有了虚拟列,这个问题就好办多了,能够已空间换时间。

  创建测试表

root@localhost [zeno]>show create table test_user\G ;
*************************** 1. row ***************************
Table: test_user
Create Table: CREATE TABLE `test_user` (
`uid` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(32) DEFAULT NULL,
`add_time` datetime DEFAULT NULL,
PRIMARY KEY (`uid`),
KEY `ix_name` (`name`)
) ENGINE=InnoDB AUTO_INCREMENT=6037060 DEFAULT CHARSET=utf8
1 row in set (0.00 sec) ERROR:
No query specified

  使用python插入测试数据

#!/usr/bin/python
import string
import random
import MySQLdb
import time conn = MySQLdb.connect(host='IPAddr',
port=3306,
user='zeno',
passwd='zeno',
db='zeno') def insert(para):
i = 11
while True:
r_name = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(random.randint(10, 30)))
print r_name cursor = conn.cursor()
cursor.execute("INSERT INTO test_user (name,add_time) VALUES ('%s', now())" % str(r_name))
i = i + 1
conn.commit()
#time.sleep(0.1)
print i insert(conn)

  查看插入的数据量

root@localhost [zeno]>show table status like 'test_user'\G ;
*************************** 1. row ***************************
Name: test_user
Engine: InnoDB
Version: 10
Row_format: Dynamic
Rows: 6002441
Avg_row_length: 51
Data_length: 310165504
Max_data_length: 0
Index_length: 0
Data_free: 5242880
Auto_increment: 6037060
Create_time: 2017-11-23 16:25:15
Update_time: 2017-11-23 16:23:29
Check_time: NULL
Collation: utf8_general_ci
Checksum: NULL
Create_options:
Comment:
1 row in set (0.00 sec) ERROR:
No query specified root@localhost [zeno]>select * from test_user limit 10 ;
+-----+-------------------------------+---------------------+
| uid | name | add_time |
+-----+-------------------------------+---------------------+
| 1 | U0WUJ3JJ81IRP27BSA4471 | 2017-11-23 15:37:49 |
| 2 | SOLYNM9Q9A5Y94YG | 2017-11-23 15:37:49 |
| 3 | ONNU5PPKXC3GBR | 2017-11-23 15:37:49 |
| 4 | WVC6GOJ29C | 2017-11-23 15:37:49 |
| 5 | Z653X99ZZI | 2017-11-23 15:37:49 |
| 6 | YP92P02DIKQ8O66K | 2017-11-23 15:37:49 |
| 7 | 2X3G6H8849SDP | 2017-11-23 15:37:49 |
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 |
| 9 | 15XAHWZ1IJBP6P4EKCH | 2017-11-23 15:37:50 |
| 10 | VHQJQGQC7U | 2017-11-23 15:37:50 |
+-----+-------------------------------+---------------------+
10 rows in set (0.00 sec)

  开始测试

  一、验证查询条件中使用后通配符的情况

root@localhost [zeno]>select * from test_user where name like '9N9F668XQ%' ;
+-----+-------------------------------+---------------------+
| uid | name | add_time |
+-----+-------------------------------+---------------------+
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 |
+-----+-------------------------------+---------------------+
1 row in set (0.00 sec) root@localhost [zeno]>explain select * from test_user where name like '9N9F668XQ%' ;
+----+-------------+-----------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
| 1 | SIMPLE | test_user | NULL | range | ix_name | ix_name | 99 | NULL | 1 | 100.00 | Using index condition |
+----+-------------+-----------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

  600W的数据,执行时间0.00sec,已经是毫秒级查询了

  从执行计划中可以看出,type=range, key = 'ix_name',证明是对索引ix_name进行了范围查找,所以,能很快地得到结果

  二、验证查询条件中使用前通配符的情况

root@localhost [zeno]>select * from test_user where name like '%WJBMMJEFC0' ;
+-----+-------------------------------+---------------------+
| uid | name | add_time |
+-----+-------------------------------+---------------------+
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 |
+-----+-------------------------------+---------------------+
1 row in set (3.84 sec) root@localhost [zeno]>explain select * from test_user where name like '%WJBMMJEFC0' ;
+----+-------------+-----------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | test_user | NULL | ALL | NULL | NULL | NULL | NULL | 6002441 | 11.11 | Using where |
+----+-------------+-----------+------------+------+---------------+------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

  600万的数据,运行了3.84sec,速度非常慢

  从执行计划中type=‘ALL’可以看出是进行了全表扫描,扫描完之后,再根据where条件找出合适的数据

  在MySQL5.7之前,对于这种条件中使用了前通配符的查询,几乎就是束手无策,但是,MySQL5.7中增加了一项新功能,可以用较小的代价实现快速查询

  创建虚拟列

root@localhost [zeno]>alter table test_user add r_name varchar(32) generated always as (reverse(`name`));
Query OK, 0 rows affected (0.44 sec)
Records: 0 Duplicates: 0 Warnings: 0

  在虚拟列上创建索引(跟一般创建索引无异)

root@localhost [zeno]>create index ix_r_name on test_user(r_name) ;
Query OK, 0 rows affected (41.90 sec)
Records: 0 Duplicates: 0 Warnings: 0

  问题来了,已经创建了虚拟列,也创建了所以,怎么实现对前通配符的快速查询呢?

  先用一个简短的数字来说明一下思路:假设要查询的列的最终值为‘0123456789’,前通配查询的时候,条件是 name like '%6789',但是已经创建了虚拟列,虚拟列的效果是把原来的数据反转,也就是变成了‘9876543210’,那么,查询的条件变成了name like '9876%',但是,不可能是每次都要自己计算一下,把'6789'换成‘9876’

  因此,在查询的时候,还要取巧的一步,条件中再次把输入的值反转,结果如下

root@localhost [zeno]>select * from test_user where r_name like concat(reverse('WJBMMJEFC0'),'%');
+-----+-------------------------------+---------------------+-------------------------------+
| uid | name | add_time | r_name |
+-----+-------------------------------+---------------------+-------------------------------+
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 | 0CFEJMMBJWF0ENCSQRTMQX866F9N9 |
+-----+-------------------------------+---------------------+-------------------------------+
1 row in set (0.00 sec) root@localhost [zeno]>explain select * from test_user where r_name like concat(reverse('WJBMMJEFC0'),'%');
+----+-------------+-----------+------------+-------+---------------+-----------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+-------+---------------+-----------+---------+------+------+----------+-------------+
| 1 | SIMPLE | test_user | NULL | range | ix_r_name | ix_r_name | 99 | NULL | 1 | 100.00 | Using where |
+----+-------------+-----------+------------+-------+---------------+-----------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

  从执行结果来看,效果已经达到了,600W的数据也只是执行了0.00sec

  三、在条件中同时使用了前通配符和后通配符的情况,暂时没有好的解决办法

参考文档:

  MySQL官方介绍虚拟列:https://dev.mysql.com/doc/refman/5.7/en/create-table-generated-columns.html

  以上,如有错谬,请不吝指正。

  原创作品,如需转载,请标明出处,谢谢~

使用mysql5.7新特性解决前通配符查询性能问题的更多相关文章

  1. MySQL5.6 新特性之GTID【转】

    转自 MySQL5.6 新特性之GTID - jyzhou - 博客园http://www.cnblogs.com/zhoujinyi/p/4717951.html 背景: MySQL5.6在5.5的 ...

  2. [MySQL5.6 新特性] 全局事务标示符(GTID)

    GTID的全称为 global transaction identifier  , 可以翻译为全局事务标示符,GTID在原始master上的事务提交时被创建.GTID需要在全局的主-备拓扑结构中保持唯 ...

  3. 使用mysql5.7新特性(虚拟列)解决使用前通配符性能问题

    众所周知,在mysql里的后通配符可以使用索引查找,前通配查询却无法使用到索引,即使是使用到了索引,也是使用了索引全扫描,效率依然不高,再MySQL5.7之前,一直都没有好的办法解决,但是到了MySQ ...

  4. MySQL5.6新特性Index conditontion pushdow

    index condition pushdown是MySQL5.6的新特性,主要是对MySQL索引使用的优化. Index condition push简称ICP,索引条件下推,将索引条件从serve ...

  5. MySQL5.7新特性

    MySQL5.7介绍 身处 MySQL 这个圈子,能够切身地感受到大家对 MySQL 5.7 的期待和热情,似乎每个人都迫不及待的想要了解.学习和使用 MySQL 5.7.那么,我们不禁要问, MyS ...

  6. mysql5.7新特性探究

    一.MySql5.7增加的特性 1.MySql服务方面新特性 1) 初始化方式改变 MySql5.7之前版本初始化方式: scripts/mysql_install_db MySql5.7版本初始化方 ...

  7. 小心SQL SERVER 2014新特性——基数评估引起一些性能问题

    在前阵子写的一篇博文"SQL SERVER 2014 下IF EXITS 居然引起执行计划变更的案例分享"里介绍了数据库从SQL SERVER 2005升级到 SQL SERVER ...

  8. 盘点 Oracle 11g 中新特性带来的10大性能影响

    Oracle的任何一个新版本,总是会带来大量引人瞩目的新特性,但是往往在这些新特性引入之初,首先引起的是一些麻烦,因为对于新技术的不了解.因为对于旧环境的不适应,从Oracle产品到技术服务运维,总是 ...

  9. MySQL5.6 新特性之GTID

    背景: MySQL5.6在5.5的基础上增加了一些改进,本文章先对其中一个一个比较大的改进"GTID"进行说明. 概念: GTID即全局事务ID(global transactio ...

随机推荐

  1. new Date("2018-01-01 11:11:11").valueOf() 在IE下会返回 NaN

    原因是在ie下 new Date不能处理 小横线 这种时间格式,但是 替换成 斜线就可以正常获得毫秒数,像下面这样: new Date(('2018-01-01 11:11:11').replace( ...

  2. SGU - 495 概率DP

    题意:n个带礼物的盒子和m个人,每个人拿一个盒子并放回,如果里面有礼物就拿走(盒子还是留下),问m个人带走礼物的期望 #include<iostream> #include<algo ...

  3. vue 修饰符(转载)

    大佬写的很详细,直接转载过来,随时可以参考, 原博:https://www.w3cplus.com/vue/vue-methods-and-event-handling.html 事件处理 如果需要在 ...

  4. Xtts v4 xttdriver.pl & xtt.properties

    Perl脚本xttdriver.pl选项的描述  下表描述了主要支持脚本xttdriver.pl的可用选项. 级备份.这些备份将写入xtt.properties变量"backupformat ...

  5. switch case 注意事项+1 及 case合并综合练习例子

    case可以合并: 练习11:根据输入的星期,得到具体每天做的事情.星期一学习,星期二学习,星期三自习,星期四学习,星期五自习,星期六学习,星期日学习 class Switch02{ public s ...

  6. php编译常见错误

    php PHP编译安装时常见错误解决办法[转] This article is post on https://coderwall.com/p/ggmpfa configure: error: xsl ...

  7. PHP unlink删除本地中文名称的文件

    由于编码不一样,用unlink()方法删除本地中文名称的材料之前,必须先转码,才能删除成功. 核心代码如下: //删除本地的议题材料(本地上传的材料)             if($local_ma ...

  8. Hadoop升级

    1.停止所有MR任务 stop-mapred.sh 2.检查HDFS hadoop fsck / -files -blocks -locations > dfs-v-old-fsck-.log ...

  9. 通过c++ 读写文本文件的中文乱码的解决方法

    前提:VS2010 ,MFC ,文本文件为ANSI格式. 读文件: CString str,fileContent;CStdioFile myFile, File;if(myFile.Open(Gen ...

  10. nyoj 983 ——首尾相连数组的最大子数组和——————【最大子串和变形】

    首尾相连数组的最大子数组和 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 给定一个由N个整数元素组成的数组arr,数组中有正数也有负数,这个数组不是一般的数组,其首 ...