(1)字符串反转

1倒序输出

s = 'abcde'
print(s[::-1])
#输出: 'edcba'

2 列表reverse()操作

s = 'abcde'
lt = list(s)
lt.reverse()
print(''.join(lt))
#输出: 'edcba'

3 二分法交换位置

s = 'abcde'
lt = list(s)
for i in range(len(l) // 2):
lt[i], lt[-(i+1)] = lt[-(i+1)], lt[i]
print(''.join(lt))
#输出: 'edcba'

4 列表生成式

s = 'abcde'
print(''.join([s[i-1] for i in range(len(s), 0, -1)]))
#输出: 'edcba'

5 栈的思想

s = 'abcde'
lt = list(s)
res = ''
while lt:
res += lt.pop()
print(res)
#输出: 'edcba'

6 递归的思路

def res_str(s):
if len(s) == 1:
return s
head = s[0]
tail = s[1:]
return res_str(tail)+head
res_str('abcd')
#输出: 'dcba'

(2)冒泡排序

采用循环

import numpy as np
def bubble_sort(arr):
for i in range(1,arr.size):
for j in range(arr.size-1):
if arr[j] > arr[j+1]:
arr[j],arr[j+1] = arr[j+1],arr[j]
print(arr)
arr = np.array([4,7,8,9,3,6,7,9,4,0])
bubble_sort(arr)

采用数组中的partition,用递归实现

import numpy as np
def quick_sort(arr):
if arr.size == 1:
return arr
_arr = np.partition(arr,1) #在索引1前面的一定是最小值
return np.append(_arr[:1],quick_sort(_arr[1:]))
quick_sort(arr) def quick_sort2(arr):
if arr.size < 2:
return arr
_arr = np.partition(arr,1) #在索引2前面的一定是最小值
return np.append(_arr[:2],quick_sort2(_ar/r[2:]))
quick_sort2(arr)

(3)高阶函数用法

map函数的用法

map : map()函数接收两个参数,一个是函数,一个是Iterablemap将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']

map()传入的第一个参数是f,即函数对象本身。由于结果r是一个IteratorIterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。

reduce函数的用法

reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

把序列[1, 3, 5, 7, 9]变换成整数13579,reduce就可以派上用场

from functools import reduce
>>> def func(x, y):
... return x * 10 + y
...
>>> reduce(func, [1, 3, 5, 7, 9])
13579

如果是完成字符串转数字了,那么就可以采用mapreduce组合

>>> from functools import reduce
>>> def func(x, y):
... return x * 10 + y
...
>>> def tran(s):
... digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
... return digits[s]
...
>>> reduce(func, map(tran, '13579'))
13579 >>>reduce(lambda x,y:10*x+y, map(tran,'13579')) #字符串也是可迭代的
13579

对于一般的函数表达式我们建议采用lambda函数实现,下面我们用lambda函数改写

>>>reduce(lambda x,y: x*10+y , [1,3,5,7,9])
13579
>>>reduce(lambda x,y:10*x+y, map(int,['1','3','5','7','9']))
13579
>>>reduce(lambda x,y:10*x+y, map(int,['1','3','5','7','9']))
13579

filter过滤函数

filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。

def not_empty(s):
return s and s.strip() list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']

注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。

一般我们也会与lambda函数配合,非常方便的取代if判断效果.

class BookViewModel:
self.publisher = book['publisher']
self.author = book['author']
self.price = book['price'] def intro(self):
intros = filter(lambda x:True if x else False,[self.author,self.publisher,self.price])
return '/'.join(str(s) for s in intros)

lambda x:True if x else False可以实现对x是否为空的判定,X存在返回True,并保留,X不存在返回空并排除.

注意:

join函数组合可迭代对象时,当对象中存在数字与字符串类型不同时,需要转成统一格式再组合.一般采 取的做法是先遍历可迭代对象转统一格式后合并. '/'.join(str(s) for s in intros)

sorted函数

Python内置的sorted()函数

>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]

sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:

>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]

字符串的排序

>>> sorted(['bob', 'about', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']

默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a',结果,大写字母Z会排在小写字母a的前面。

sorted函数中key可以实现用户自定义排序规则,而不仅仅限于简单排序

>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']

key=str.lower 按照统一小写排序, reverse=True实现反向排序.

(4)@property

Python内置的@property装饰器就是负责把一个方法变成属性调用的:

class Student(object):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value

把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值

>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!

最经典的地方是对于私有变量的存储 , 例如密码

class User(Base):
'''
模型属性设置
'''
id = Column(Integer, primary_key=True)
nickname = Column(String(24), nullable=False)
_password = Column('password',String(64)) @property
def password(self): #加上 @property类似将其变为getattr
return self._password @password.setter #负责生成哈希加密
def password(self,raw):
self._password = generate_password_hash(raw)

@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,因此@password.setter负责生成hash密文并设置给私有属性self._password,通过调用 xxx.password就可获取值

(5) setattr hasattr getattr 动态操作属性

hasattr(object, name)

判断一个对象里面是否有name属性或者name方法,返回BOOL值,有name特性返回True, 否则返回Falsegetattr(object, name[,default])

获取对象object的属性或者方法,如果存在打印出来,如果不存在,打印出默认值,默认值可选。

需要注意的是,如果是返回的对象的方法,返回的是方法的内存地址.

setattr(object, name, values)

给对象的属性赋值,若属性不存在,先创建再赋值

>>> hasattr(t, "name") #判断对象有name属性
True
>>> hasattr(t, "run") #判断对象有run方法
True >>> class test():
... name="xiaohua"
... def run(self):
... return "HelloWord"
...
>>> t=test()
>>> getattr(t, "name") #获取name属性,存在就打印出来。
'xiaohua'
>>> getattr(t, "run") #获取run方法,存在就打印出方法的内存地址。
<bound method test.run of <__main__.test instance at 0x0269C878>>
>>> getattr(t, "age") #获取一个不存在的属性。
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: test instance has no attribute 'age'
>>> getattr(t, "age","18") #若属性不存在,返回一个默认值
'18'
>>> >>> hasattr(t, "age") #判断属性是否存在
False
>>> setattr(t, "age", "18") #为属相赋值,并没有返回值
>>> hasattr(t, "age") #属性存在了
True

例如我们有需求保存用户数据

user = User()
user.name = form.name.data
user.phone_number = form.name.data
....

实际应用中常常综合用来判断类实例对象是否含有某属性值 , 存在就获取 ,不存在就设置

#attrs_dict以字典的形式存储了用户的信息
def set_attrs(self, attrs_dict):
for key, value in attrs_dict.items():
#判断用户是否含有该属性
if hasattr(self, key) and key != 'id':
#设置属性值
setattr(self, key, value)

python字符串反转 高阶函数 @property与sorted(八)的更多相关文章

  1. Python 函数式编程 & Python中的高阶函数map reduce filter 和sorted

    1. 函数式编程 1)概念 函数式编程是一种编程模型,他将计算机运算看做是数学中函数的计算,并且避免了状态以及变量的概念.wiki 我们知道,对象是面向对象的第一型,那么函数式编程也是一样,函数是函数 ...

  2. Python中的高阶函数与匿名函数

    Python中的高阶函数与匿名函数 高阶函数 高阶函数就是把函数当做参数传递的一种函数.其与C#中的委托有点相似,个人认为. def add(x,y,f): return f( x)+ f( y) p ...

  3. Python入门篇-高阶函数

    Python入门篇-高阶函数 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.高级函数  1>.First Class Object 函数在Python中是一等公民 函数也 ...

  4. python的高阶函数(map,filter,sorted,reduce)

    高阶函数 关注公众号"轻松学编程"了解更多. 1.MapReduce MapReduce主要应用于分布式中. 大数据实际上是在15年下半年开始火起来的. 分布式思想:将一个连续的字 ...

  5. python 常用的高阶函数

    前言 高阶函数指的是能接收函数作为参数的函数或类:python中有一些内置的高阶函数,在某些场合使用可以提高代码的效率. map() map函数可以把一个迭代对象转换成另一个可迭代对象,不过在pyth ...

  6. Python 学习——高阶函数 filter 和 sorted

    filter filter函数顾名思义,筛选,通过调用函数进行筛选序列中的满足函数的子项 以实例来说话: 过滤一个序列中所有的偶数,保留奇数 另如下,过滤掉一个序列中的所有空格以及空字符等信息 可以知 ...

  7. Python学习笔记 - 高阶函数

    高阶函数英文叫Higher-order function.什么是高阶函数?我们以实际代码为例子,一步一步深入概念. 变量可以指向函数 以Python内置的求绝对值的函数abs()为例,调用该函数用以下 ...

  8. Python基础——4高阶函数

    高阶函数 函数本身可用变量指向,把变量当做函数参数的函数成为高阶函数 map and reduce map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每 ...

  9. 匿名函数python内置高阶函数以及递归

    匿名函数 python定义一个函数通常使用def关键词,后面跟函数名,然后是注释.代码块等. def func(): '''注释''' print('from func') 这样就在全局命名空间定义了 ...

随机推荐

  1. JAVA数据结构--选择排序

    选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理如下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然 ...

  2. 一些英文表达-youtube

    culinary tradition 烹饪传统 crunchy 松脆的 boutique  精品店 migraine  偏头痛 colon 冒号 towel 毛巾 ecstatic  狂喜的 bok ...

  3. c# IList.ToList()后更改元素值会不会影响原列表的值

    class ListTest { public static void Test() { #region 值类型 var oListVal = new List<int>() { ,,, ...

  4. 给小程序组件创建slot

    <!--comviewonents/juan/juan.wxml--> <view class="model-wrapper" hidden="{{vi ...

  5. Spring 配置 Apache Commons Logging

    第一次用spring framework,刚配了个最简单的项目,启动出现如下错误,查了知道原来spring要依赖Apache common logging包.只需要添加到项目library中即可.可从 ...

  6. 移动端数据爬取(fidlde)

    一.什么是Fiddler? 1 什么是Fiddler? Fiddler是位于客户端和服务器端的HTTP代理,也是目前最常用的http抓包工具之一 . 它能够记录客户端和服务器之间的所有 HTTP请求, ...

  7. 前端 day 039

    一 .html css js 三大基本语言 定义文档的结构:HTML  修饰文档的样式 : css  行为 : JavaScript HTML 全称 Hyper Text Mackeup Langua ...

  8. Twitter Storm 安装实战

    实际上安装Twitter Storm是上周三的事情了,周三的时候安装了一个单机版的,用WordCount跑了一下,感觉还不错.周四试着在集群上安装,碰到了一些问题,一直折腾到周五,留了个尾巴(没有做测 ...

  9. AttackEnemy人物攻击判断

    AttackEnemy人物攻击判断 /// <param name="attackArea">攻击范围</param> /// <param name ...

  10. 牛客网Java刷题知识点之为什么HashMap和HashSet区别

    不多说,直接上干货! HashMap  和  HashSet的区别是Java面试中最常被问到的问题.如果没有涉及到Collection框架以及多线程的面试,可以说是不完整.而Collection框架的 ...