hadoop生态搭建(3节点)-07.hive配置
# http://archive.apache.org/dist/hive/hive-2.1.1/
# ==================================================================安装 hive
tar -zxvf apache-hive-2.1.1-bin.tar.gz -C /usr/local
mv /usr/local/apache-hive-2.1.1-bin /usr/local/hive-2.1.1
rm –r ~/apache-hive-2.1.1-bin.tar.gz cp ~/mysql-connector-java-5.1.46.jar /usr/local/hive-2.1.1/lib/
# 配置环境变量
# ==================================================================node1 node2 node3
vi /etc/profile # 在export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL下添加
export JAVA_HOME=/usr/java/jdk1.8.0_111
export ZOOKEEPER_HOME=/usr/local/zookeeper-3.4.12
export HADOOP_HOME=/usr/local/hadoop/hadoop-2.7.6
export MYSQL_HOME=/usr/local/mysql
export HBASE_HOME=/usr/local/hbase-1.2.4
export HIVE_HOME=/usr/local/hive-2.1.1 export PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$ZOOKEEPER_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$MYSQL_HOME/bin:$HBASE_HOME/bin:$HIVE_HOME/bin
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
# ==================================================================node1
# 使环境变量生效
source /etc/profile # 查看配置结果
echo $HIVE_HOME mkdir -p $HIVE_HOME/data/hive
mkdir -p $HIVE_HOME/data/hive/operaion_logs
mkdir -p $HIVE_HOME/data/resources # 配置 hive
cp $HIVE_HOME/conf/hive-env.sh.template $HIVE_HOME/conf/hive-env.sh
cp $HIVE_HOME/conf/hive-default.xml.template $HIVE_HOME/conf/hive-site.xml
cp $HIVE_HOME/conf/hive-exec-log4j2.properties.template $HIVE_HOME/conf/hive-exec-log4j2.properties
cp $HIVE_HOME/conf/hive-log4j2.properties.template $HIVE_HOME/conf/hive-log4j2.properties
# ${system:java.io.tmpdir}/${system:user.name} 替换为本机路径 /usr/local/hive-2.1.1/data/hive
# ${system:java.io.tmpdir}/${hive.session.id}_resources替换为本机路径 /usr/local/hive-2.1.1/data/resources
# ${system:java.io.tmpdir}/${system:user.name}/operation_logs 替换为本机路径 /usr/local/hive-2.1.1/data/hive/operation_logs
vi $HIVE_HOME/conf/hive-site.xml
# esc 后输入
:%s#${system:java.io.tmpdir}/${system:user.name}#/usr/local/hive-2.1.1/data/hive#
:%s#${system:java.io.tmpdir}/${hive.session.id}_resources#/usr/local/hive-2.1.1/data/resources#
# esc / 输入 hive.exec.scratchdir 找到后<value> 点击 Insert 键后进行修改
<property>
<name>hive.exec.scratchdir</name>
<value>/hive/tmp</value>
</property> <property>
<name>hive.metastore.warehouse.dir</name>
<value>/hive/warehouse</value>
</property> <!-- 通过jdbc协议连接mysql的hive库 -->
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://node1:3306/hive?createDatabaseIfNotExist=true&useSSL=false</value>
</property> <!-- jdbc的mysql驱动 -->
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property> <!-- mysql用户名 -->
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>hive</value>
</property> <!-- mysql用户密码 -->
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>Hive-123</value>
</property> <!--hiveserver2的HA-->
<property>
<name>hive.server2.support.dynamic.service.discovery</name>
<value>true</value>
</property> <property>
<name>hive.zookeeper.quorum</name>
<value>node1:2181,node2:2181,node3:2181</value>
</property> <!-- hive的web页面暂时不配置 -->
<property>
<name>hive.hwi.war.file</name>
<value>/usr/local/hive-2.1.1/lib/hive-hwi-2.1.1.jar</value>
</property>
# 从hbase/lib下复制必要jar包到hive/lib下
cp $HBASE_HOME/lib/hbase-client-1.2.4.jar $HBASE_HOME/lib/hbase-common-1.2.4.jar $HIVE_HOME/lib # 同步hive和hadoop的jline版本
cp $HIVE_HOME/lib/jline-2.12.jar $HADOOP_HOME/share/hadoop/yarn/lib # 查看版本
# cd $HADOOP_HOME/share/hadoop/yarn/lib
# find ./ -name "*jline*jar" # 删除低版本的jline 0.9
# rm jline-0.9.94.jar # 复制jdk的tools.jar到hive/lib下
cp $JAVA_HOME/lib/tools.jar $HIVE_HOME/lib # rm -f $HIVE_HOME/lib/log4j-slf4j-impl-2.4.1.jar vi $HIVE_HOME/conf/hive-env.sh HADOOP_HOME=/usr/local/hadoop-2.7.6
export HIVE_HOME=/usr/local/hive-2.1.1
export HIVE_CONF_DIR=/usr/local/hive-2.1.1/conf
export HIVE_AUX_JARS_PATH=/usr/local/hive-2.1.1/lib
# 如果hadoop之前没有配置hadoop.proxyuser.root.groups需配置
# ==================================================================node1 node2 node3
# 如果没有权限,在Hadoop的core-site.xml中增加配置:
vi $HADOOP_HOME/etc/hadoop/core-site.xml <property>
<name>hadoop.proxyuser.root.groups</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.root.hosts</name>
<value>*</value>
</property> # ==================================================================node1
# 使用超级用户刷新配置
yarn rmadmin -refreshSuperUserGroupsConfiguration
hdfs dfsadmin -refreshSuperUserGroupsConfiguration # ==================================================================node1 node2
# 如果是对namenode做过HA,则需要在主备namenode上执行
hdfs dfsadmin -fs hdfs://appcluster -refreshSuperUserGroupsConfiguration
# ==================================================================node2 node3
# 使环境变量生效
source /etc/profile # 查看配置结果
echo $HIVE_HOME
# ==================================================================node1
$HIVE_HOME/bin/schematool -initSchema -dbType mysql scp -r $HIVE_HOME node2:/usr/local/
scp -r $HIVE_HOME node3:/usr/local/
# 启动
# ==================================================================node1 node2 node3
# 启动 zookeeper
zkServer.sh start
zkServer.sh status # ==================================================================node1
# 启动hadoop所有进程
$HADOOP_HOME/sbin/start-all.sh $HADOOP_HOME/sbin/hadoop-daemon.sh start zkfc # ==================================================================node2
$HADOOP_HOME/sbin/yarn-daemon.sh start resourcemanager
$HADOOP_HOME/sbin/hadoop-daemon.sh start zkfc # ==================================================================node1
# 要实现Hbase的HA(High Availablity)
$HBASE_HOME/bin/hbase-daemon.sh start master # 启动Hbase(start-hbase.sh)
$HBASE_HOME/bin/start-hbase.sh # ==================================================================node2
# 开启Hbase的HA
$HBASE_HOME/bin/hbase-daemon.sh start master # ==================================================================node1
$HIVE_HOME/bin/hiveserver2 # ==================================================================node2
$HIVE_HOME/bin/hiveserver2 # ==================================================================node1
zkCli.sh ls /hiveserver2 get /hiveserver2/serverUri=node1:10000;version=2.1.1;sequence=0000000000 $HIVE_HOME/bin/beeline -u "jdbc:hive2://node1:2181,node2:2181,node3:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2" root 123456 # $HIVE_HOME/bin/beeline
# > !connect jdbc:hive2://node1:2181,node2:2181,node3:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2 root "123456" > create external table user_info(user_id int comment 'userID',user_name string comment 'userName')row format delimited fields terminated by '\t' lines terminated by '\n'; > show tables; mkdir /root/hive vi /root/hive/user_info.txt 1001 zhangsan
1002 lisi
1003 wangwu > load data local inpath '/root/hive/user_info.txt' into table user_info; > select * from user_info; > quit; hdfs dfs -ls / hdfs dfs -ls /hive/warehouse hdfs dfs -cat /hive/warehouse/user_info/user_info.txt hadoop fs -mkdir /hive_input_data vi /root/hive/user_info.txt 1001 zhangsan
1002 lisi
1003 wangwu
1004 liuliu
1005 qiqi hadoop fs -put /root/hive/user_info.txt /hive_input_data hdfs dfs -ls /hive_input_data # hdfs -dfs -chmod 777 /hive_input_data > select * from user_info; > load data inpath '/hive_input_data/user_info.txt' overwrite into table user_info; > select * from user_info; # ==================================================================node1
# stop已经启动的进程
$HBASE_HOME/bin/stop-hbase.sh $HADOOP_HOME/sbin/stop-all.sh # ==================================================================node1 node2 node3
# 停止 zookeeper
zkServer.sh stop # ==================================================================node1
$HADOOP_HOME/sbin/hadoop-daemon.sh stop zkfc # ==================================================================node2
$HADOOP_HOME/sbin/yarn-daemon.sh stop resourcemanager
$HADOOP_HOME/sbin/hadoop-daemon.sh stop zkfc shutdown -h now
# 快照 hive_hiveserver2集群
hadoop生态搭建(3节点)-07.hive配置的更多相关文章
- hadoop生态搭建(3节点)
软件:CentOS-7 VMware12 SSHSecureShellClient shell工具:Xshell 规划 vm网络配置 01.基础配置 02.ssh配置 03.zookeep ...
- hadoop生态搭建(3节点)-08.kafka配置
如果之前没有安装jdk和zookeeper,安装了的请直接跳过 # https://www.oracle.com/technetwork/java/javase/downloads/java-arch ...
- hadoop生态搭建(3节点)-04.hadoop配置
如果之前没有安装jdk和zookeeper,安装了的请直接跳过 # https://www.oracle.com/technetwork/java/javase/downloads/java-arch ...
- hadoop生态搭建(3节点)-09.flume配置
# http://archive.apache.org/dist/flume/1.8.0/# ===================================================== ...
- hadoop生态搭建(3节点)-10.spark配置
# https://www.scala-lang.org/download/2.12.4.html# ================================================= ...
- hadoop生态搭建(3节点)-13.mongodb配置
# 13.mongodb配置_副本集_认证授权# ==================================================================安装 mongod ...
- hadoop生态搭建(3节点)-15.Nginx_Keepalived_Tomcat配置
# Nginx+Tomcat搭建高可用服务器名称 预装软件 IP地址Nginx服务器 Nginx1 192.168.6.131Nginx服务器 Nginx2 192.168.6.132 # ===== ...
- hadoop生态搭建(3节点)-17.sqoop配置_单节点
# ==================================================================安装 sqoop tar -zxvf ~/sqoop-1.4.7 ...
- hadoop生态搭建(3节点)-03.zookeeper配置
# https://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html # ===== ...
随机推荐
- select * from pet where species regexp '^c';
select * from pet where species regexp '^c';
- BIEE入门(四)展现层
BIEE里最终面向最终用户(业务界面使用者的)叫做BIEE的Presentation Layer也即展现层,展现层的定义将是最终用户Web报表开发界面里能够看见的完全一样的样子,所以展现层一般将是以最 ...
- 模拟ArrayList
package com.helloidea; import java.util.ArrayList; import java.util.Collection; import java.util.Lis ...
- MySQL代码备份
package com.dus.utils; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io. ...
- Flask环境github及项目部署(十三)
(1) github项目搭建 1 连接GitHub hostnamectl set-hostname flask-dev # 设置 hostname,一般是主机名可以不更改 ssh-keygen # ...
- shell中和RDA中的alert日志中文乱码
客户端字符集无法识别中文,只能下载到本机使用nodepad++查看
- 用PHP向数据库中实现简单的增删改查(纯代码)
<?php $con = mysql_connect("localhost:3306","root",""); if (!$con) ...
- 模线性方程&&中国剩余定理及拓展
一.求解模线性方程 由ax=b(mod n) 可知ax = ny + b 就相当于ax + ny = b 由扩展欧几里得算法可知有解条件为gcd(a, n)整除d 可以直接套用扩展欧几里得算法 最终由 ...
- 2018.11.4 Hibernate中一对、多对多的关系
简单总结一下 多表关系 一对多/多对一 O 对象 一的一方使用集合. 多的一方直接引用一的一方. R 关系型数据库 多的一方使用外键引用一的一方主键. M 映射文件 一: 多: 操作: 操作管理级别属 ...
- set 和select 的区别
简单赋值是没有区别的