http://www.lydsy.com/JudgeOnline/problem.php?id=4522

题目:给你RSA密钥的公钥和密文,求私钥和原文,其中\(N=pq\le 2^{62}\),p和q为质数。

RSA加密算法:https://en.wikipedia.org/wiki/RSA_(cryptosystem)

N的范围较小,我们可以用pollard-rho算法在期望O(N^0.25)的时间把N分解出来,用exgcd求逆元之后直接代入。

因为懒,写了一个很短的模板。速度还行,进了第一页。

upd:更新了模板,在另一篇文章里面。

/**************************************************************
Problem: 4522
User: will7101
Language: C++
Result: Accepted
Time:392 ms
Memory:1292 kb
****************************************************************/ #include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
const int MAXN = 100005;
ll mmul(ll a, ll b, ll m){ll r=0;for(;b;b>>=1,a=a+a>=m?a+a-m:a+a)if(b&1)r=r+a=>m?r+a-m:r+a;return r;}
ll mpow(ll a, ll b, ll m){ll r=1;for(;b;b>>=1,a=mmul(a,a,m))if(b&1)r=mmul(r,a,m);return r;}
ll gcd(ll a, ll b){return a?gcd(b%a,a):b;}
ll exgcd(ll a, ll b, ll &x, ll &y){
if(a==0) return x=0, y=1, b;
ll t=exgcd(b%a, a, y, x);
x-=y*(b/a); return t;
}
ll work(ll n, ll c)
{
ll x, y;
x=y=rand();
while(1){
x=(mmul(x,x,n)+c)%n;
y=(mmul(y,y,n)+c)%n;
y=(mmul(y,y,n)+c)%n;
if(x==y) return 1;
ll p=gcd(x>y?x-y:y-x, n);
if(p>1) return p;
}
}
int main()
{
srand(19260817);
ll e, n, C, p, q, c, r, x, y;
cin>>e>>n>>C;
c=1;
while((p=work(n, c))==1) c++;
q=n/p; r=(p-1)*(q-1);
exgcd(e, r, x, y); x=(x+r)%r;
cout<<x<<' '<<mpow(C,x,n);
return 0;
}

BZOJ 4522: [Cqoi2016]密钥破解的更多相关文章

  1. BZOJ 4522: [Cqoi2016]密钥破解 (Pollard-Rho板题)

    Pollard-Rho 模板 板题-没啥说的- 求逆元出来后如果是负的记得加回正数 CODE #include<bits/stdc++.h> using namespace std; ty ...

  2. BZOJ 4522: [Cqoi2016]密钥破解 exgcd+Pollard-Rho

    挺简单的,正好能再复习一遍 $exgcd$~ 按照题意一遍一遍模拟即可,注意一下 $pollard-rho$ 中的细节. #include <ctime> #include <cma ...

  3. LG4718 【模板】Pollard-Rho算法 和 [Cqoi2016]密钥破解

    Pollard-Rho算法 总结了各种卡常技巧的代码: #define int long long typedef __int128 LL; IN int fpow(int a,int b,int m ...

  4. BZOJ4522:[CQOI2016]密钥破解(Pollard-Rho,exgcd)

    Description 一种非对称加密算法的密钥生成过程如下: 1. 任选两个不同的质数 p ,q 2. 计算 N=pq , r=(p-1)(q-1) 3. 选取小于r ,且与 r 互质的整数 e  ...

  5. BZOJ4522: [Cqoi2016]密钥破解

    pollard's rho模板题. 调参调到160ms无能为力了,应该是写法问题,不玩了. #include<bits/stdc++.h> using namespace std; typ ...

  6. [CQOI2016]密钥破解

    嘟嘟嘟 这题我读了两遍才懂,然后感觉要解什么高次同余方程--然后我又仔细的看了看题,发现只要求得\(p\)和\(q\)就能求出\(r\),继而用exgcd求出\(d\),最后用快速幂求出\(n\). ...

  7. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  8. LibreOJ2045 - 「CQOI2016」密钥破解

    Portal Description 给出三个正整数\(e,N,c(\leq2^{62})\).已知\(N\)能表示成\(p\cdot q\)的形式,其中\(p,q\)为质数.计算\(r=(p-1)( ...

  9. Visio Premium 2010密钥+破解激活方法

    Visio Premium 2010密钥+破解激活方法: 在安装时能够使用下面密钥: GR24B-GC2XY-KRXRG-2TRJJ-4X7DC VWQ6G-37WBG-J7DJP-CY66Y-V27 ...

随机推荐

  1. Spring Boot 学习随记

    微架构的思想在各大互联网公司越来越普及,特此记录Spring Boot的一些细节问题! 网上spring-boot的教程一堆一堆,就没有必要再详细记录了 1:建议通过Idea 来创建spring-bo ...

  2. 从零开始搭建一个react项目

    Nav logo 120 发现 关注 消息 4 搜索 从零开始搭建一个react项目 96 瘦人假噜噜 2017.04.23 23:29* 字数 6330 阅读 32892评论 31喜欢 36 项目地 ...

  3. 从零开始配置Jenkins(三)——用户权限管理

    背景 最近项目管理中需要对jenkins的权限进行区分和限定,就研究了一下下.顺道把用户和权限这块的内容分享给大家. 用户 要想创建用户,需要先设定允许用户注册. 在系统设置,Configure Gl ...

  4. javascript 数组以及对象的深拷贝

    如果 let arr2 = arr1:  那么只是赋值的引用,改变arr2也会相应的改变arr1: 如果 let arr2 = [].concat(arr1): 如果arr1里面不是引用类型,那么ar ...

  5. Qt5.6关联VS2013,配置VAssistX

    1. 安装Qt qt-creator-opensource-windows-x86-4.2.0.exe 2. 安装Qt VS插件 qt-vs-addin-1.2.5.exe 3. 配置ASSISTX ...

  6. 【bzoj2956】模积和 数论

    题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...

  7. DataBase -- Operator

    TOP子句用于规定要返回的记录的数目. SELECT TOP number | percent column_name FROM table_name LIKE操作符用于在WHERE子句中搜索列的指定 ...

  8. oracle数据库导入导出方法

    Oracle Database 10g以后引入了最新的数据泵(Data Dump)技术,使DBA或开发人员可以将数据库元数据(对象定义)和数据快速移动到另一个oracle数据库中. 数据泵导出导入(E ...

  9. HDU 多校对抗 F Naive Operations

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  10. Death Note

    注:本文系作者原创,但可随意转载. ********************************************************************************** ...