BZOJ4320 ShangHai2006 Homework(分块+并查集)
考虑根号分块。对于<√3e5的模数,每加入一个数就暴力更新最小值;对于>√3e5的模数,由于最多被分成√3e5块,查询时对每一块找最小值,这用一些正常的DS显然可以做到log,但不太跑得过。考虑并查集在序列上的奇技淫巧。加点不太能做,考虑离线改成删点。并查集维护下一个未删除的点即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define M 300000
int m,n,q,a[N],b[N],mn[N],ans[N],fa[N*];
bool flag[N*];
const int block=;
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4320.in","r",stdin);
freopen("bzoj4320.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
m=read();
for (int i=;i<=block;i++) mn[i]=i;
while (m--)
{
char c=getchar();while (c!='A'&&c!='B') c=getchar();
a[++n]=read();
if (c=='A')
{
b[n]=;flag[a[n]]=;
for (int i=;i<=block;i++)
mn[i]=min(mn[i],a[n]%i);
}
else if (a[n]<=block) ans[n]=mn[a[n]];
}
fa[M+]=M+;
for (int i=M;i>=;i--) if (flag[i]) fa[i]=i;else fa[i]=fa[i+];
for (int i=n;i>=;i--)
if (b[i]) fa[a[i]]=find(a[i]+);
else if (a[i]>block)
{
ans[i]=M+;
for (int j=;j<=M;j+=a[i])
{
int p=find(j);
if (p<min(j+a[i],M+)) ans[i]=min(ans[i],p%a[i]);
}
}
for (int i=;i<=n;i++) if (!b[i]) printf("%d\n",ans[i]);
return ;
}
BZOJ4320 ShangHai2006 Homework(分块+并查集)的更多相关文章
- 【BZOJ4320】ShangHai2006 Homework 分段+并查集
[BZOJ4320]ShangHai2006 Homework Description 1:在人物集合 S 中加入一个新的程序员,其代号为 X,保证 X 在当前集合中不存在. 2:在当前的人 ...
- 洛谷P3247 最小公倍数 [HNOI2016] 分块+并查集
正解:分块+并查集 解题报告: 传送门! 真的好神仙昂QAQ,,,完全想不出来,,,还是太菜了QAQ 首先还是要说下,这题可以用K-D Tree乱搞过去(数据结构是个好东西昂,,,要多学学QAQ),但 ...
- [APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释)
[APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释) 题面 略 分析 考试的时候就感觉子任务4是突破口,结果却写了个Kruskal重构树,然后一直想怎么在线用数据结构维护 实 ...
- P5443 [APIO2019]桥梁 [分块+并查集]
分块+并查集,大板子,没了. 并查集不路径压缩,可撤销,然后暴力删除 这样对于每个块都是独立的,所以直接搞就行了. 然后块内修改操作搞掉,就是单独的了 // powered by c++11 // b ...
- [BZOJ4320][ShangHai2006]Homework(根号分治+并查集)
对于<=sqrt(300000)的询问,对每个模数直接记录结果,每次加入新数时暴力更新每个模数的结果. 对于>sqrt(300000)的询问,枚举倍数,每次查询大于等于这个倍数的最小数是多 ...
- [BZOJ4537][HNOI2016]最小公倍数(分块+并查集)
4537: [Hnoi2016]最小公倍数 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 1687 Solved: 607[Submit][Stat ...
- HDU 6271 Master of Connected Component(2017 CCPC 杭州 H题,树分块 + 并查集的撤销)
题目链接 2017 CCPC Hangzhou Problem H 思路:对树进行分块.把第一棵树分成$\sqrt{n}$块,第二棵树也分成$\sqrt{n}$块. 分块的时候满足每个块是一个 ...
- bzoj 4537: [Hnoi2016]最小公倍数 分块+并查集
题目大意: 给定一张n个点m条边的无向图,每条边有两种权.每次询问某两个点之间是否存在一条路径上的边的两种权的最大值分别等于给定值. n,q <= 50000. m <= 100000 题 ...
- Codeforces 506D Mr. Kitayuta's Colorful Graph(分块 + 并查集)
题目链接 Mr. Kitayuta's Colorful Graph 把每种颜色分开来考虑. 所有的颜色分为两种:涉及的点的个数 $> \sqrt{n}$ 涉及的点的个数 $<= ...
随机推荐
- vue服务端渲染浏览器端缓存(keep-alive)
在使用服务器端渲染时,除了服务端的接口缓存.页面缓存.组建缓存等,浏览器端也避免不了要使用缓存,减少页面的重绘. 这时候我们就会想到vue的keep-alive,接下来我们说一下keep-alive的 ...
- c# WebBrowser开发参考资料--杂七杂八
c# WebBrowser开发参考资料 http://hi.baidu.com/motiansen/blog/item/9e99a518233ca3b24aedbca9.html=========== ...
- Delphi方法
unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, For ...
- 网站安全检测 漏洞检测 对thinkphp通杀漏洞利用与修复建议
thinkphp在国内来说,很多站长以及平台都在使用这套开源的系统来建站,为什么会这么深受大家的喜欢,第一开源,便捷,高效,生成静态化html,第二框架性的易于开发php架构,很多第三方的插件以及第三 ...
- 通过py2exe打包python程序的过程中,解决的一系列问题
py2exe的使用方法参考<py2exe使用方法>. 注:程序可以在解释器中正常运行,一切问题都出在打包过程中. 问题1: 现象:RuntimeError: maximum recursi ...
- django序列化时间
具体代码: import json,time,datetime lis ={'time':datetime.date.today(),"username":"zhilei ...
- Java - 问题集 - 导出csv文件中文乱码
微软的excel文件需要通过文件头的bom来识别编码,所以写文件时,需要先写入bom头. FileOutputStream fos = new FileOutputStream(new File(&q ...
- [转]Visual Studio 项目类型 GUID 清单
转自:https://www.codeproject.com/Reference/720512/List-of-Visual-Studio-Project-Type-GUIDs Complete li ...
- jenkins安全内容配置策略
有时我们使用HTML Publisher Plugin插件时,在jenkins点开html report,会发现没有带任何的css或js样式,这是因为Jenkins 1.641 / Jenkins 1 ...
- 使用JDK自带的keytool工具生成证书
一.keytool 简介 keytool 是java用于管理密钥和证书的工具,它使用户能够管理自己的公钥/私钥对及相关证书,用于(通过数字签名)自我认证(用户向别的用户/服务认证自己)或数据完整性以及 ...