【题解】HNOI2008GT考试
这题好难啊……完全不懂矩阵加速递推的我TAT
这道题目要求我们求出不含不吉利数字的字符串总数,那么我们有dp方程 : dp[i][j](长度为 i 的字符串,最长与不吉利数字前缀相同的后缀长度为 j 的方案数)。 dp[i][j] = Σdp[i - 1][k] * a[k][j] (a 数组表示从 k 状态转移到 j 状态的方案数)。a 数组我们可以通过 kmp 对不吉利数字的每一个前缀后面加上‘0’~‘9’转移匹配得到(匹配成功表示成功转移状态,a[k][j]++;否则表示此时没有重合的后缀,a[k][0]++)。
此时这道题目我们已经拥有了一个相对优的解法了,但是还不够。注意到上面的式子,我们对于dp数组与a数组分别建立矩阵,dp矩阵是一个列矩阵,一列代表1~k的状态,a矩阵第 j 行上每个数分别表示a[j][k]。所以得到的答案dp[i][j]即为dp矩阵与a矩阵第 j 行的乘积。矩阵快速幂优化即可。
#include <bits/stdc++.h>
using namespace std;
#define maxn 100000
int n, m, Mod, k, ans;
char s[maxn], nxt[maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct Matrix
{
int num[][];
void init()
{
memset(num, , sizeof(num));
}
Matrix operator*(const Matrix &x)
{
Matrix tem;
tem.init();
for(int i = ; i < m; i ++)
for(int j = ; j < m; j ++)
for(int k = ; k < m; k ++)
{
tem.num[i][j] += (num[i][k] * x.num[k][j]) % Mod;
tem.num[i][j] %= Mod;
}
return tem;
}
}T, S; void KMP()
{
int j = ;
for(int i = ; i <= m; i ++)
{
while(j && s[j + ] != s[i]) j = nxt[j];
if(s[j + ] == s[i]) j ++;
nxt[i] = j;
}
j = ;
for(int i = ; i < m; i ++)
for(int k = ; k <= ; k ++)
{
j = i;
while(j && s[j + ] != (char) k + '') j = nxt[j];
if(s[j + ] == (char) k + '') T.num[i][j + ] ++;
else T.num[i][] ++;
}
} void Qpow()
{
for(int i = ; i < m; i ++) S.num[i][i] = ;
while(n)
{
if(n & ) S = S * T;
T = T * T;
n >>= ;
}
} int main()
{
n = read(), m = read(), k = read();
Mod = k;
scanf("%s", s + );
KMP();
Qpow();
for(int i = ; i < m; i ++)
ans = (ans + S.num[][i]) % Mod;
printf("%d\n", ans);
return ;
}
【题解】HNOI2008GT考试的更多相关文章
- 题解 GT考试
题目传送门 题目大意 给出\(n,m,k\),以及一个长度为\(m\)的数字串\(s_{1,2,...,m}\),求有多少个长度为\(n\)的数字串\(X\)满足\(s\)不出现在其中的个数模\(k\ ...
- HNOI2008GT考试
题目链接 考虑dp,f(i,j)表示做到了第i位(共n位),当前的后缀串与A1~Aj相匹配 接下来的方案数.转移的话枚举一个k=0~9表示这位选什么,如果选了以后,匹配的位置会改变到 j' ,j'可以 ...
- 竞赛题解 - NOIP2018 赛道修建
\(\mathcal {NOIP2018}\) 赛道修建 - 竞赛题解 额--考试的时候大概猜到正解,但是时间不够了,不敢写,就写了骗分QwQ 现在把坑填好了~ 题目 (Copy from 洛谷) 题 ...
- CSP-J 2020题解
CSP-J 2020题解 本次考试还是很有用的,至少把我浇了一盆冷水. 当使用民间数据自测的时候,我就自闭了. 估分是320,但有些比较低级的错误直接少掉80. 而且这套题应该上350才正常吧,也不是 ...
- jsoi2015 R2——滚粗记
考完感觉各种绝望溢出胸口,作为百度空间的最后一篇文章了吧 day 0 第二轮在南师附中……不能到外地玩了…… 其实在试机的时候就感觉不大对头,明明说好18:15试机结果拖到18:30…… 还有今年竟然 ...
- [SinGuLaRiTy] COCI 2016~2017 #5
[SinGuLaRiTy-1012] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 最近神犇喜欢考COCI...... 测试题目 对于所有的 ...
- 【BZOJ4738/UOJ#276】汽水(点分治,分数规划)
[BZOJ4738/UOJ#276]汽水(点分治,分数规划) 题面 BZOJ UOJ 题解 今天考试的题目,虽然说是写完了,但是感觉还是半懂不懂的来着. 代码基本照着\(Anson\)爷的码的,orz ...
- [Codeforces526F]Pudding Monsters 分治
F. Pudding Monsters time limit per test 2 seconds memory limit per test 256 megabytes In this proble ...
- 【BZOJ2423】最长公共子序列(动态规划)
[BZOJ2423]最长公共子序列(动态规划) 题面 BZOJ 洛谷 题解 今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz. 对于如何\(O(n^ ...
随机推荐
- css跨浏览器大全
CSS技巧1.div的垂直居中问题 vertical-align:middle; 将行距增加到和整个DIV一样高 line-height:200px; 然后插入文字,就垂直居中了.缺点是要控制内容不要 ...
- Linux 必会
一.一般命令:1.cd 进入磁盘文件夹2.ls- 查看当前文件夹包含哪些文件,注意-后面的3.pwd 立刻知道目前所在哪个文件及4.mkdir 创建文件夹5.touch touch命令用于修改文件或者 ...
- iWebShop产品功能技术优势有什么?
iwebshop基于iweb si 框架开发,在获得iweb si 技术平台支持的条件下,iwebshop可以轻松满足用户量级百万至千万级的大型电子商务网站的性能要求.站点的集群与分布式技术(分布式计 ...
- php 删除富文本编辑器保存内容中的其他代码(保留中文)
$str = '<p><p style="ve:"">测试筛选文本域内的中文 </p><p sty;"> ...
- ZooKeeper(1)-入门
一. Zookeeper工作机制 二.Zookeeper特点 三.Zookeeper数据结构 四.Zookeeper应用场景 统一命名服务 统一配置管理 统一集群管理 服务器动态上下线 软负载均衡
- hack游戏攻略(梦之光芒黑客小游戏)
2019.2.11 继续玩~~还是黑客游戏闯关类的 地址:http://monyer.com/game/game1/ 直接查看页面代码: first.php就是了: 查看源代码: 这里尝试输入 两个空 ...
- u-boot.bin生成过程分析
ELF格式“u-boot”文件的生成规则如下,下面对应Makefile的执行过程分别分析各个依赖. $(obj)u-boot: depend version $(SUBDIRS) $(OBJS) $( ...
- 简单整理React的Context API
之前做项目时经常会遇到某个组件需要传递方法或者数据到其内部的某个子组件,中间跨越了甚至三四层组件,必须层层传递,一不小心哪层组件忘记传递下去了就不行.然而我们的项目其实并没有那么复杂,所以也没有使用r ...
- java性能测试工具 jprofiler
1.下载地址 官方网址:http://www.ej-technologies.com/products/jprofiler/overview.html 2.Eclipse集成 该文(http://ji ...
- BLE(Bluetooth Low Energy)---first part
原文地址:https://developer.android.com/guide/topics/connectivity/bluetooth-le.html#terms (本人是技术宅,翻译时候,只要 ...