这题真的是无语了,在哪个岛上根本就没有任何的用处……不过我是画了下图,感受到一定是仙人掌,并不会证。有谁会证的求解……

  如果当做仙人掌来做确实十分的简单。只要像没有上司的舞会一样树形dp就好了,遇到环出现的时候把环遍历一遍单独求解,和小C的独立集完全是一样的做法。

#include <bits/stdc++.h>
using namespace std;
#define maxn 500000
#define int long long
#define INF 999999999
int n, m, cnp = ;
int f[maxn][], fa[maxn], val[maxn];
int ans, timer, dfn[maxn], low[maxn]; struct edge
{
int cnp = , head[maxn], to[maxn], last[maxn];
void add(int u, int v)
{
to[cnp] = v, last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, last[cnp] = head[v], head[v] = cnp ++;
}
}E1; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Solve(int u, int v)
{
bool flag = ;
if(u == ) flag = ;
int f1 = , f0 = ;
for(int i = v; i != u; i = fa[i])
{
int t0 = f0 + f[i][], t1 = f1 + f[i][];
f0 = max(t0, t1), f1 = t0;
}
f[u][] += f0;
f1 = -INF, f0 = ;
for(int i = v; i != u; i = fa[i])
{
int t0 = f[i][] + f0, t1 = f[i][] + f1;
f1 = t0, f0 = max(t0, t1);
}
f[u][] += f1;
} void Tarjan(int u)
{
dfn[u] = low[u] = ++ timer;
f[u][] = , f[u][] = val[u];
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(v == fa[u]) continue;
if(!dfn[v])
{
fa[v] = u; Tarjan(v);
low[u] = min(low[u], low[v]);
}
else low[u] = min(low[u], dfn[v]);
if(low[v] > dfn[u] && fa[v] == u)
f[u][] += f[v][], f[u][] += max(f[v][], f[v][]);
}
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(dfn[v] > dfn[u] && fa[v] != u) Solve(u, v);
}
} signed main()
{
n = read(), m = read();
for(int i = ; i <= m; i ++)
{
int u = read(), v = read();
E1.add(u, v);
}
for(int i = ; i <= n; i ++)
val[i] = read();
for(int i = ; i <= n; i ++)
{
if(dfn[i]) continue;
Tarjan(i); ans += max(f[i][], f[i][]);
}
printf("%lld\n", ans);
return ;
}

【题解】HNOI2009无归岛的更多相关文章

  1. 【BZOJ1487】[HNOI2009]无归岛(动态规划)

    [BZOJ1487][HNOI2009]无归岛(动态规划) 题面 BZOJ 洛谷 题解 哪来的这么多废话啊,直接说一个仙人掌得了. 然后就是要你求仙人掌最大独立集了.(随便蒯份原来的代码就过了) 不过 ...

  2. P4410 [HNOI2009]无归岛

    P4410 [HNOI2009]无归岛 显然这还是一个仙人掌图 对于同一个岛上的任意两个生物,他们有且仅有一个公共朋友 要求求最大独立集,和树形dp一样,遇到环时单独提出来处理一下就好了 #inclu ...

  3. bzoj1487 [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛 上的任意两个生物,他们有且仅有 ...

  4. 【刷题】BZOJ 1487 [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...

  5. [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...

  6. BZOJ1487 [HNOI2009]无归岛 【仙人掌dp】

    题目链接 BZOJ1487 题解 就是一个简单的仙人掌最大权独立集 还是不会圆方树 老老实实地树形Dp + 环处理 #include<iostream> #include<cstdi ...

  7. 【BZOJ1487】[HNOI2009]无归岛(仙人掌 DP)

    题目: BZOJ1487 分析: 题目中给定的图一定是一棵仙人掌(每条边最多属于一个环),证明如下: 先考虑单独一个岛的情况.第一,一个岛一定是一张「弦图」,即任意一个大小超过 3 的环都至少有 1 ...

  8. 2019.02.07 bzoj1487: [HNOI2009]无归岛(仙人掌+树形dp)

    传送门 人脑转化条件过后的题意简述:给你一个仙人掌求最大带权独立集. 思路:跟这题没啥变化好吗?再写一遍加深记忆吧. 就是把每个环提出来分别枚举环在图中的最高点选还是不选分别dpdpdp一下即可,时间 ...

  9. Luogu-4410 [HNOI2009]无归岛

    裸的仙人掌最大独立子集,结果一个zz的错误让我调了好久... \(-inf\)开始设为\(0x7fffffff\)结果\(A_i\)有负数一加就炸了 #include<cstdio> #i ...

随机推荐

  1. jquery图片滚动animate.css

    @charset "UTF-8"; /*!Animate.css - http://daneden.me/animateLicensed under the MIT license ...

  2. 电子商城实录------定义init初始化的方法

    路由方法的设置 //路由方法 private static function dispatch(){ //获取控制器名称(类比:英文单词的后缀) $controller_name=CONTROLLER ...

  3. Python爬虫基础(一)——HTTP

    前言 因特网联系的是世界各地的计算机(通过电缆),万维网联系的是网上的各种各样资源(通过超文本链接),如静态的HTML文件,动态的软件程序······.由于万维网的存在,处于因特网中的每台计算机可以很 ...

  4. while,格式化输出

    1. while循环: while 条件: 代码块(循环体) num=1 while num<=5: print(num) num+=1 break:结束循环;停止当前本层循环 continue ...

  5. ccf201703-2 STLlist

    题目:http://118.190.20.162/view.page?gpid=T56 问题描述 体育老师小明要将自己班上的学生按顺序排队.他首先让学生按学号从小到大的顺序排成一排,学号小的排在前面, ...

  6. Servlet生命周期与线程安全

    上一篇介绍了Servlet初始化,以及如何处理HTTP请求,实际上在这两个过程中,都伴随着Servlet的生命周期,都是Servlet生命周期的一部分.同时,由于Tomcat容器默认是采用单实例多线程 ...

  7. vi编辑图

    vi使用方法

  8. 4,由spring展开的串烧

    一.什么是Spring框架?Spring框架有哪些主要模块? Spring框架是一个为Java应用程序的开发提供了综合.广泛的基础性支持的Java平台.Spring帮助开发者解决了开发中基础性的问题, ...

  9. Django笔记 —— Admin(Django站点管理界面)

    最近在学习Django,打算玩玩网页后台方面的东西,因为一直很好奇但却没怎么接触过.Django对我来说是一个全新的内容,思路想来也是全新的,或许并不能写得很明白,所以大家就凑合着看吧- 本篇笔记(其 ...

  10. PowerMock简单使用

    网上有很多PowerMock的介绍,此处就不再罗列 下面给出一些资源地址以及几篇案例 mockito资源: (1)源码:https://github.com/mockito/mockito power ...