layout: post

title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA)

author: "luowentaoaa"

catalog: true

mathjax: true

tags:

- 最小生成树

- LCA

- 图论

- 训练指南


Bond

UVA - 11354

题意

给你一张无向图,然后有若干组询问,让你输出a->b的最小瓶颈路

题解

先求出最小生成树,然后对这个最小生成树做LCA。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int maxn=1e5+50;
const int logmaxn=20;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
struct LCA{
int n;
int fa[maxn]; ///父亲数组
int cost[maxn]; ///和父亲的费用
int L[maxn]; ///层次(根节点为0)
int anc[maxn][logmaxn]; /// anc[p][i]是结点p的第2^i级父亲。anc[i][0] = fa[i]
int maxcost[maxn][logmaxn]; /// maxcost[p][i]是i和anc[p][i]的路径上的最大费用
void preprocess(){
for(int i=0;i<n;i++){
anc[i][0]=fa[i];maxcost[i][0]=cost[i];
for(int j=1;(1<<j)<n;j++)anc[i][j]=-1;
}
for(int j=1;(1<<j)<n;j++)
for(int i=0;i<n;i++)
if(anc[i][j-1]!=-1){
int a=anc[i][j-1];
anc[i][j]=anc[a][j-1];
maxcost[i][j]=max(maxcost[i][j-1],maxcost[a][j-1]);
}
}
/// 求p到q的路径上的最大权
int query(int p,int q){
int tmp,log,i;
if(L[p]<L[q])swap(p,q);
for(log=1;(1<<log)<=L[p];log++);log--;
int ans=-inf;
for(int i=log;i>=0;i--)
if(L[p]-(1<<i)>=L[q]){ans=max(ans,maxcost[p][i]);p=anc[p][i];} if(p==q)return ans; ///LCA为p for(int i=log;i>=0;i--)
if(anc[p][i]!=-1&&anc[p][i]!=anc[q][i]){
ans=max(ans,maxcost[p][i]);p=anc[p][i];
ans=max(ans,maxcost[q][i]);q=anc[q][i];
}
ans=max(ans,cost[p]);
ans=max(ans,cost[q]);
return ans; ///LCA为fa[p](它也等于fa[q])
}
};
LCA solver;
int pa[maxn];
int findset(int x){return pa[x]!=x?pa[x]=findset(pa[x]):x;}
vector<int>G[maxn],C[maxn];
void dfs(int u,int fa,int level){
solver.L[u]=level;
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(v!=fa){
solver.fa[v]=u;
solver.cost[v]=C[u][i];
dfs(v,u,level+1);
}
}
} struct Edge{
int x,y,d;
bool operator <(const Edge& rhs)const{
return d<rhs.d;
}
};
const int maxm=1e5+10;
Edge e[maxm]; int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int kase=0,n,m,x,y,d,Q;
while(cin>>n>>m){
for(int i=0;i<m;i++){
cin>>x>>y>>d;e[i]=(Edge){x-1,y-1,d};
}
sort(e,e+m);
for(int i=0;i<n;i++){pa[i]=i;G[i].clear();C[i].clear();}
for(int i=0;i<m;i++){
int x=e[i].x,y=e[i].y,d=e[i].d,u=findset(x),v=findset(y);
if(u!=v){
pa[u]=v;
G[x].push_back(y);G[y].push_back(x);
C[x].push_back(d);C[y].push_back(d);
}
}
solver.n=n;
dfs(0,-1,0);
solver.preprocess();
if(++kase!=1)cout<<endl;
cin>>Q;
while(Q--){
cin>>x>>y;
cout<<solver.query(x-1,y-1)<<endl;
}
}
return 0;
}

训练指南 UVA - 11354(最小生成树 + 倍增LCA)的更多相关文章

  1. 【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集

    [题目]D. Best Edge Weight [题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1&l ...

  2. 【bzoj3732】Network 最小生成树+倍增LCA

    题目描述 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 & ...

  3. 训练指南 UVA - 11419(二分图最小覆盖数)

    layout: post title: 训练指南 UVA - 11419(二分图最小覆盖数) author: "luowentaoaa" catalog: true mathjax ...

  4. 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y))

    layout: post title: 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y)) author: "luowentaoaa" cata ...

  5. 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)

    layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...

  6. 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)

    layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...

  7. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  8. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

  9. 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)

    layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...

随机推荐

  1. 【算法】高斯消元&线性代数

    寒假作业~就把文章和题解3道题的代码扔在这里啦——链接: https://pan.baidu.com/s/1kWkGnxd 密码: bhh9 1.HNOI2013游走 #include <bit ...

  2. hdu 6203 ping ping ping(LCA+树状数组)

    hdu 6203 ping ping ping(LCA+树状数组) 题意:给一棵树,有m条路径,问至少删除多少个点使得这些路径都不连通 \(1 <= n <= 1e4\) \(1 < ...

  3. Divljak

    Divljak Alice 有 $n$ 个字符串 $ S_1,S_2,\cdots,S_n $ ,Bob有一个字符串集合 $T$ ,一开始集合是空的. 接下来会发生 $q$ 个操作,操作有两种形式: ...

  4. JavaScript词法作用域与调用对象

    关于 Javascript 的函数作用域.调用对象和闭包之间的关系很微妙,关于它们的文章已经有很多,但不知道为什么很多新手都难以理解.我就尝试用比较通俗的语言来表达我自己的理解吧. 作用域 Scope ...

  5. 7月21号day13总结

    今天学习过程和小结 学习了hive中的数据类型以及hive的简单查询, 学习了sqoop version用sqoop导入导出数据. 主要用于在Hadoop(Hive)与传统的数据库(mysql.pos ...

  6. a标签的download属性简介

    最近在工作中需要一个前端直接下载静态文件的需求,之前有粗略的了解过a标签的download属性,通过download和href属性可以实现文件的下载. 简介 HTML <a> 元素 (或锚 ...

  7. Nginx使用教程----提高Nginx网络吞吐量之buffers优化

    请求缓冲区在NGINX请求处理中起着重要作用. 在接收到请求时,NGINX将其写入这些缓冲区. 这些缓冲区中的数据可作为NGINX变量使用,例如$request_body. 如果缓冲区与请求大小相比较 ...

  8. 汕头市队赛 SRM 06 C 秀恩爱

    C 秀恩爱 SRM 06 背景&&描述         KPM坐在直升机上俯瞰小渔村景象.         渔村可看作二维平面,密密麻麻地到处都是单身狗,KPM当前所在坐标为(sx,s ...

  9. js事件中绑定另一事件导致事件多次执行

    1.html代码 <input type="button" value="add"> <input type="button&quo ...

  10. css的@符号的作用简单介绍