D. Sum of Medians
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.

A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as

The operator stands for taking the remainder, that is stands for the remainder of dividing x by y.

To organize exercise testing quickly calculating the sum of medians for a changing set was needed.

Input

The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.

Then each of n lines contains the description of one of the three operations:

  • add x — add the element x to the set;
  • del x — delete the element x from the set;
  • sum — find the sum of medians of the set.

For any add x operation it is true that the element x is not included in the set directly before the operation.

For any del x operation it is true that the element x is included in the set directly before the operation.

All the numbers in the input are positive integers, not exceeding 109.

Output

For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.

Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).

Examples
Input
6
add 4
add 5
add 1
add 2
add 3
sum
Output
3
Input
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
Output
5
11
13
【分析】有n个操作,1:向集合中加一个数x;2:去掉集合中的数x;3:询问从小到大排序后,所有下标i%5==3的值的和。
刚开始想到线段树了,但是不知道怎么写,然后看了网上的题解。。。好强啊!!!每个节点额外保存此区间i=0~4的和,然后cnt数组保存此区间 元素的个数。
然后求和合并的时候,sum[rt][i]=sum[rt*2][i]+sum[rt*2+1][(i-cnt[rt*2]%5+5)%5];这个公式可以自己推一下。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
typedef long long ll;
const int N=2e5+;
const int M=N*N+;
int num,s,m,n,q;
int a[N],op[N],b[N];
ll sum[N*][];
int cnt[N*];
inline void PushPlus(int rt) {
cnt[rt]=cnt[rt*]+cnt[rt*+];
for(int i=;i<=;i++){
sum[rt][i]=sum[rt*][i]+sum[rt*+][(i-cnt[rt*]%+)%];
}
} void Update(int p,int add,int l,int r,int rt,int x) {
if(l==r) {
sum[rt][]+=add;
cnt[rt]+=x;
return;
}
int m=(r+l)>>;
if(p<=m)Update(p,add,lson,x);
else Update(p,add,rson,x);
PushPlus(rt);
} int main() {
int u,vv,w;
scanf("%d",&q);
char str[];
n=;
for(int i=;i<=q;i++){
scanf("%s",str);
if(str[]=='a'){
scanf("%d",&b[i]);
op[i]=;
a[++n]=b[i];
}
else if(str[]=='d'){
scanf("%d",&b[i]);
op[i]=-;
}
else {
op[i]=;
}
}
sort(a+,a+n+);
n=unique(a+,a+n+)-a-;
for(int i=;i<=q;i++){
if(abs(op[i])==){
int p=lower_bound(a+,a++n,b[i])-a;
Update(p,b[i]*op[i],,n,,op[i]);
}
else {
printf("%lld\n",sum[][]);
}
}
return ;
}

Coderforces 85 D. Sum of Medians(线段树单点修改)的更多相关文章

  1. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  2. Ocean的礼物(线段树单点修改)

    题目链接:http://oj.ismdeep.com/contest/Problem?id=1284&pid=0 A: Ocean的礼物 Time Limit: 5 s      Memory ...

  3. Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树

    题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...

  4. codeforces 85D D. Sum of Medians 线段树

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  5. POJ 3321 Apple Tree(DFS序+线段树单点修改区间查询)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25904   Accepted: 7682 Descr ...

  6. HDU 1166 敌兵布阵 <线段树 单点修改 区间查询>

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  7. HDU - 1166 敌兵布阵 方法一:(线段树+单点修改,区间查询和) 方法二:利用树状数组

    C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况.由于 ...

  8. 校内模拟赛T5:连续的“包含”子串长度( nekameleoni?) —— 线段树单点修改,区间查询 + 尺取法合并

    nekameleoni 区间查询和修改 给定N,K,M(N个整数序列,范围1~K,M次查询或修改) 如果是修改,则输入三个数,第一个数为1代表修改,第二个数为将N个数中第i个数做修改,第三个数为修改成 ...

  9. HDU1754 I hate it(线段树 单点修改)

    好久没打线段树,来一道练练手,但说句实话,I really hate it!!!!   很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感.  不管 ...

随机推荐

  1. BZOJ 1101 [POI2007]Zap | 第一道莫比乌斯反(繁)演(衍)

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题解: http://www.cnblogs.com/mrha/p/8203612.h ...

  2. 洛谷 P2501 [HAOI2006]数字序列 解题报告

    P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...

  3. HDU.2095(异或运算)

    find your present (2) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  4. socket编程 ------ 建立 TCP 服务器和客户端流程(阻塞方式)

    服务器端: 服务器端先创建一个socket,然后把这个socket绑定到端口上,接着让它向tcp/ip协议栈请求一个监听服务并创建一个accept队列来接受客户端请求. void creat_tcpS ...

  5. ListView使用--文章集锦

    详解ListView加载网络图片的优化,让你轻松掌握! ListView具有多种item布局--实现微信对话列 关注公众号,分享干货,讨论技术

  6. bootstrap table 怎么自适应宽度

    <div class="table-responsive"> <table class="table text-nowrap"> < ...

  7. 【BZOJ3624】【APIO2008】免费道路 [生成树][贪心]

    免费道路 Time Limit: 2 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Input Output Sampl ...

  8. 【比赛】百度之星2017 初赛Round B

    第一题 题意:给定n*m网络,定义两个棋子在同行同列则相互攻击,同时要求两个棋子的行和列不能一小一大,求满足条件的最大摆放的方案数. 题解:ans=C(max(n,m),min(n,m)),就是在ma ...

  9. 河南省第十届省赛 Binary to Prime

    题目描述: To facilitate the analysis of  a DNA sequence,  a DNA sequence is represented by a binary  num ...

  10. csrf_execmp

    参考;https://www.cnblogs.com/zhaof/p/6281482.html 全局: 中间件 django.middleware.csrf.CsrfViewMiddleware 局部 ...