树链剖分【CF343D】Water Tree
Description
Mad scientist Mike has constructed a rooted tree, which consists of nnvertices. Each vertex is a reservoir which can be either empty or filled with water.
The vertices of the tree are numbered from 1 to nn with the root at vertex 1. For each vertex, the reservoirs of its children are located below the reservoir of this vertex, and the vertex is connected with each of the children by a pipe through which water can flow downwards.
Mike wants to do the following operations with the tree:
Fill vertex vv with water. Then vv and all its children are filled with water.
Empty vertex vv . Then vv and all its ancestors are emptied.
Determine whether vertex vv is filled with water at the moment.
Initially all vertices of the tree are empty.Mike has already compiled a full list of operations that he wants to perform in order. Before experimenting with the tree Mike decided to run the list through a simulation. Help Mike determine what results will he get after performing all the operations.
Input
The first line of the input contains an integer \(n ( 1<=n<=500000\) ) — the number of vertices in the tree. Each of the following n-1n−1 lines contains two space-separated numbers \(a_{i}, b_{i}\) ( \(1<=a_{i},b_{i}<=n, a_{i}≠b_{i}\) ) — the edges of the tree.
The next line contains a number \(q ( 1<=q<=500000 )\) — the number of operations to perform. Each of the following \(q\) lines contains two space-separated numbers \(c_{i}( 1<=c_{i}<=3\) ), \(v_{i}\)( \(1<=v_{i}<=n\) ), where \(c_{i}\) is the operation type (according to the numbering given in the statement), and \(v_{i}\) is the vertex on which the operation is performed.
It is guaranteed that the given graph is a tree.
Output
For each type 3 operation print 1 on a separate line if the vertex is full, and 0 if the vertex is empty. Print the answers to queries in the order in which the queries are given in the input.
你不需要理解题意,你只需要知道,这是一个树剖裸题(虽然我没一遍切。)
支持三种操作(初始值全部为\(0\))
- 1.将节点\(v\)及其子树赋值为\(1\).
- 2.将节点\(v\)到根节点\(1\)的路径上的点的值置为\(0\).
- 3.查询当前节点\(v\)的值。(只会为\(0\)或\(1\))
对于每个操作\(3\),输出一行。(具体见代码好了
这是一个不完整的树剖,我没建树,有没用到反\(dfs\)序。 emmm
代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define R register
using namespace std;
const int gz=500001;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int head[gz],tot,n,m;
struct cod{int u,v;}edge[gz<<1];
inline void add(R int x,R int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
}
int dfn[gz],idx,son[gz],f[gz],depth[gz],size[gz],top[gz];
void dfs1(R int u,R int fa)
{
f[u]=fa;depth[u]=depth[fa]+1;size[u]=1;
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs1(edge[i].v,u);
size[u]+=size[edge[i].v];
if(son[u]==-1 or size[son[u]]<size[edge[i].v])
son[u]=edge[i].v;
}
}
void dfs2(R int u,R int t)
{
dfn[u]=++idx;top[u]=t;
if(son[u]==-1)return ;
dfs2(son[u],t);
for(R int i=head[u];i;i=edge[i].u)
{
if(dfn[edge[i].v])continue;
dfs2(edge[i].v,edge[i].v);
}
}
int tg[gz<<2],tr[gz<<2];
#define ls o<<1
#define rs o<<1|1
inline void down(R int o)
{
if(tg[o]==-1)return;
tg[ls]=tg[rs]=tg[o];
tr[ls]=tr[rs]=tr[o];
tg[o]=-1;
return ;
}
void change(R int o,R int l,R int r,R int x,R int y,R int k)
{
if(x<=l and y>=r){tr[o]=tg[o]=k;return;}
down(o);
R int mid=(l+r)>>1;
if(x<=mid)change(ls,l,mid,x,y,k);
if(y>mid)change(rs,mid+1,r,x,y,k);
}
int query(R int o,R int l,R int r,R int pos)
{
if(l==r)return tr[o];
down(o);
R int mid=(l+r)>>1;
if(pos<=mid)return query(ls,l,mid,pos);
else return query(rs,mid+1,r,pos);
}
inline void tchange(R int x,R int y)
{
R int fx=top[x],fy=top[y];
while(fx!=fy)
{
if(depth[fx]>depth[fy])
{
change(1,1,n,dfn[fx],dfn[x],0);
x=f[fx];
}
else
{
change(1,1,n,dfn[fy],dfn[y],0);
y=f[fy];
}
fy=top[y],fx=top[x];
}
if(dfn[x]>dfn[y])swap(x,y);
change(1,1,n,dfn[x],dfn[y],0);
return ;
}
int main()
{
in(n);memset(son,-1,sizeof son);
for(R int i=1,x,y;i<n;i++)
{
in(x),in(y);
add(x,y),add(y,x);
}
dfs1(1,0);dfs2(1,1);memset(tg,-1,sizeof tg);
in(m);
for(R int i=1,opt,v;i<=m;i++)
{
in(opt);
switch(opt)
{
case 1:in(v);change(1,1,n,dfn[v],dfn[v]+size[v]-1,1);break;
case 2:in(v);tchange(1,v);break;
case 3:in(v);printf("%d\n",query(1,1,n,dfn[v]));break;
}
}
}
树链剖分【CF343D】Water Tree的更多相关文章
- 【BZOJ3626】LCA(树链剖分,Link-Cut Tree)
[BZOJ3626]LCA(树链剖分,Link-Cut Tree) 题面 Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. ...
- 【BZOJ2157】旅游(树链剖分,Link-Cut Tree)
[BZOJ2157]旅游(树链剖分,Link-Cut Tree) 题面 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥 ...
- 洛谷P4482 [BJWC2018]Border 的四种求法 字符串,SAM,线段树合并,线段树,树链剖分,DSU on Tree
原文链接https://www.cnblogs.com/zhouzhendong/p/LuoguP4482.html 题意 给定一个字符串 S,有 q 次询问,每次给定两个数 L,R ,求 S[L.. ...
- 树链剖分 (求LCA,第K祖先,轻重链剖分、长链剖分)
2020/4/30 15:55 树链剖分是一种十分实用的树的方法,用来处理LCA等祖先问题,以及对一棵树上的节点进行批量修改.权值和查询等有奇效. So, what is 树链剖分? 可以简单 ...
- Codeforces Round #200 (Div. 1) D Water Tree 树链剖分 or dfs序
Water Tree 给出一棵树,有三种操作: 1 x:把以x为子树的节点全部置为1 2 x:把x以及他的所有祖先全部置为0 3 x:询问节点x的值 分析: 昨晚看完题,马上想到直接树链剖分,在记录时 ...
- Codeforces Round #200 (Div. 1) D. Water Tree 树链剖分+线段树
D. Water Tree time limit per test 4 seconds memory limit per test 256 megabytes input standard input ...
- Water Tree(树链剖分+dfs时间戳)
Water Tree http://codeforces.com/problemset/problem/343/D time limit per test 4 seconds memory limit ...
- CodeForces 343D water tree(树链剖分)
Mad scientist Mike has constructed a rooted tree, which consists of n vertices. Each vertex is a res ...
- Codeforces 343D Water Tree & 树链剖分教程
原题链接 题目大意 给定一棵根为1,初始时所有节点值为0的树,进行以下三个操作: 将以某点为根的子树节点值都变为1 将某个节点及其祖先的值都变为0 *询问某个节点的值 解题思路 这是一道裸的树链剖分题 ...
- Water Tree CodeForces 343D 树链剖分+线段树
Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...
随机推荐
- P1140 相似基因
题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了4种核苷酸,简记作A,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. 在一个人类基因工作组的任务中,生物学家研究 ...
- arc073 F many moves(dp + 线段树)
设dp[i][y]表示一个点在x[i],另一个点在y时最小要走的步数 那么有以下转移 对于y != x[i-1]的状态,可以证明,他们直接加|x[i] - x[i-1]|即可(如果有其他方案,不符合对 ...
- [Leetcode] subsets 求数组所有的子集
Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must be ...
- PowerMock
EasyMock 以及 Mockito 都因为可以极大地简化单元测试的书写过程而被许多人应用在自己的工作中,但是这 2 种 Mock 工具都不可以实现对静态函数.构造函数.私有函数.Final 函数以 ...
- Educational Codeforces Round 55:B. Vova and Trophies
B. Vova and Trophies 题目链接:https://codeforc.es/contest/1082/problem/B 题意: 给出一个“GS”串,有一次交换两个字母的机会,问最大的 ...
- javaScript获取文档中所有元素节点的个数
HTML+JS 代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...
- 转:nginx入门指南,快速搭建静态文件服务器和代理服务器
本文介绍 Nginx 入门基础知识,让你迅速搭建 Nginx 服务器.主要内容包括 Nginx 安装和简单使用.Nginx的简单原理.Nginx 配置文件的结构.如何使用 Nginx 来提供静态文件服 ...
- Python基础(9)三元表达式、列表解析、生成器表达式
一.三元表达式 三元运算,是对简单的条件语句的缩写. # if条件语句 if x > f: print(x) else: print(y) # 条件成立左边,不成立右边 x if x > ...
- 汕头市队赛 yyl杯1 T2
B SRM 05 - YYL 杯 R1 背景&&描述 有一个拥有n个城市的国家.这个国家由n-1条边连接起来.有一天国家发生叛乱.叛军已占领了一些城市.如果叛军占领的城市中,存在两个城 ...
- BZOJ1037 DP
2013-11-15 21:51 原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1037 拿到这道题想到了DP,后来发现三维无法确定的表示状 ...