Description

Mad scientist Mike has constructed a rooted tree, which consists of nnvertices. Each vertex is a reservoir which can be either empty or filled with water.

The vertices of the tree are numbered from 1 to nn with the root at vertex 1. For each vertex, the reservoirs of its children are located below the reservoir of this vertex, and the vertex is connected with each of the children by a pipe through which water can flow downwards.

Mike wants to do the following operations with the tree:

  1. Fill vertex vv with water. Then vv and all its children are filled with water.

  2. Empty vertex vv . Then vv and all its ancestors are emptied.

  3. Determine whether vertex vv is filled with water at the moment.

    Initially all vertices of the tree are empty.Mike has already compiled a full list of operations that he wants to perform in order. Before experimenting with the tree Mike decided to run the list through a simulation. Help Mike determine what results will he get after performing all the operations.

Input

The first line of the input contains an integer \(n ( 1<=n<=500000\) ) — the number of vertices in the tree. Each of the following n-1n−1 lines contains two space-separated numbers \(a_{i}, b_{i}\) ( \(1<=a_{i},b_{i}<=n, a_{i}≠b_{i}\) ) — the edges of the tree.

The next line contains a number \(q ( 1<=q<=500000 )\) — the number of operations to perform. Each of the following \(q\) lines contains two space-separated numbers \(c_{i}( 1<=c_{i}<=3\) ), \(v_{i}\)( \(1<=v_{i}<=n\) ), where \(c_{i}\) is the operation type (according to the numbering given in the statement), and \(v_{i}\) is the vertex on which the operation is performed.

It is guaranteed that the given graph is a tree.

Output

For each type 3 operation print 1 on a separate line if the vertex is full, and 0 if the vertex is empty. Print the answers to queries in the order in which the queries are given in the input.

你不需要理解题意,你只需要知道,这是一个树剖裸题(虽然我没一遍切。)

支持三种操作(初始值全部为\(0\))

  • 1.将节点\(v\)及其子树赋值为\(1\).
  • 2.将节点\(v\)到根节点\(1\)的路径上的点的值置为\(0\).
  • 3.查询当前节点\(v\)的值。(只会为\(0\)或\(1\))

对于每个操作\(3\),输出一行。(具体见代码好了

这是一个不完整的树剖,我没建树,有没用到反\(dfs\)序。 emmm

代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define R register using namespace std; const int gz=500001; inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int head[gz],tot,n,m; struct cod{int u,v;}edge[gz<<1]; inline void add(R int x,R int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
} int dfn[gz],idx,son[gz],f[gz],depth[gz],size[gz],top[gz]; void dfs1(R int u,R int fa)
{
f[u]=fa;depth[u]=depth[fa]+1;size[u]=1;
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs1(edge[i].v,u);
size[u]+=size[edge[i].v];
if(son[u]==-1 or size[son[u]]<size[edge[i].v])
son[u]=edge[i].v;
}
} void dfs2(R int u,R int t)
{
dfn[u]=++idx;top[u]=t;
if(son[u]==-1)return ;
dfs2(son[u],t);
for(R int i=head[u];i;i=edge[i].u)
{
if(dfn[edge[i].v])continue;
dfs2(edge[i].v,edge[i].v);
}
} int tg[gz<<2],tr[gz<<2]; #define ls o<<1
#define rs o<<1|1 inline void down(R int o)
{
if(tg[o]==-1)return;
tg[ls]=tg[rs]=tg[o];
tr[ls]=tr[rs]=tr[o];
tg[o]=-1;
return ;
} void change(R int o,R int l,R int r,R int x,R int y,R int k)
{
if(x<=l and y>=r){tr[o]=tg[o]=k;return;}
down(o);
R int mid=(l+r)>>1;
if(x<=mid)change(ls,l,mid,x,y,k);
if(y>mid)change(rs,mid+1,r,x,y,k);
} int query(R int o,R int l,R int r,R int pos)
{
if(l==r)return tr[o];
down(o);
R int mid=(l+r)>>1;
if(pos<=mid)return query(ls,l,mid,pos);
else return query(rs,mid+1,r,pos);
} inline void tchange(R int x,R int y)
{
R int fx=top[x],fy=top[y];
while(fx!=fy)
{
if(depth[fx]>depth[fy])
{
change(1,1,n,dfn[fx],dfn[x],0);
x=f[fx];
}
else
{
change(1,1,n,dfn[fy],dfn[y],0);
y=f[fy];
}
fy=top[y],fx=top[x];
}
if(dfn[x]>dfn[y])swap(x,y);
change(1,1,n,dfn[x],dfn[y],0);
return ;
} int main()
{
in(n);memset(son,-1,sizeof son);
for(R int i=1,x,y;i<n;i++)
{
in(x),in(y);
add(x,y),add(y,x);
}
dfs1(1,0);dfs2(1,1);memset(tg,-1,sizeof tg);
in(m);
for(R int i=1,opt,v;i<=m;i++)
{
in(opt);
switch(opt)
{
case 1:in(v);change(1,1,n,dfn[v],dfn[v]+size[v]-1,1);break;
case 2:in(v);tchange(1,v);break;
case 3:in(v);printf("%d\n",query(1,1,n,dfn[v]));break;
}
}
}

树链剖分【CF343D】Water Tree的更多相关文章

  1. 【BZOJ3626】LCA(树链剖分,Link-Cut Tree)

    [BZOJ3626]LCA(树链剖分,Link-Cut Tree) 题面 Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. ...

  2. 【BZOJ2157】旅游(树链剖分,Link-Cut Tree)

    [BZOJ2157]旅游(树链剖分,Link-Cut Tree) 题面 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥 ...

  3. 洛谷P4482 [BJWC2018]Border 的四种求法 字符串,SAM,线段树合并,线段树,树链剖分,DSU on Tree

    原文链接https://www.cnblogs.com/zhouzhendong/p/LuoguP4482.html 题意 给定一个字符串 S,有 q 次询问,每次给定两个数 L,R ,求 S[L.. ...

  4. 树链剖分 (求LCA,第K祖先,轻重链剖分、长链剖分)

      2020/4/30   15:55 树链剖分是一种十分实用的树的方法,用来处理LCA等祖先问题,以及对一棵树上的节点进行批量修改.权值和查询等有奇效. So, what is 树链剖分? 可以简单 ...

  5. Codeforces Round #200 (Div. 1) D Water Tree 树链剖分 or dfs序

    Water Tree 给出一棵树,有三种操作: 1 x:把以x为子树的节点全部置为1 2 x:把x以及他的所有祖先全部置为0 3 x:询问节点x的值 分析: 昨晚看完题,马上想到直接树链剖分,在记录时 ...

  6. Codeforces Round #200 (Div. 1) D. Water Tree 树链剖分+线段树

    D. Water Tree time limit per test 4 seconds memory limit per test 256 megabytes input standard input ...

  7. Water Tree(树链剖分+dfs时间戳)

    Water Tree http://codeforces.com/problemset/problem/343/D time limit per test 4 seconds memory limit ...

  8. CodeForces 343D water tree(树链剖分)

    Mad scientist Mike has constructed a rooted tree, which consists of n vertices. Each vertex is a res ...

  9. Codeforces 343D Water Tree & 树链剖分教程

    原题链接 题目大意 给定一棵根为1,初始时所有节点值为0的树,进行以下三个操作: 将以某点为根的子树节点值都变为1 将某个节点及其祖先的值都变为0 *询问某个节点的值 解题思路 这是一道裸的树链剖分题 ...

  10. Water Tree CodeForces 343D 树链剖分+线段树

    Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...

随机推荐

  1. BJOI2018

    BJOI2018 省选挂完,是时候更一篇题解了.对于鬼畜结论题我只放结论不给证明,不要打我-- day1 二进制 试题描述 pupil 发现对于一个十进制数,无论怎么将其的数字重新排列,均不影响其是不 ...

  2. Seajs的用法

    以前经常听到Seajs,但是没深入了解过,不清楚到底是用做哪个方面,后来调组到M站做开发,发现项目用到了Seajs,便去了解下 SeaJS是一个遵循CMD规范的JavaScript模块加载框架,可以实 ...

  3. 纯css实现 switch开关

    <!-- 直接看代码,利用了css3兄弟选择器 --><!-- html --> <button class="switch"> <inp ...

  4. 使用 URLDecoder 和 URLEncoder 对中文字符进行编码和解码

    原文: https://blog.csdn.net/justloveyou_/article/details/57156039 使用 URLDecoder 和 URLEncoder 对中文字符进行编码 ...

  5. Codeforces Round #538 (Div. 2) (A-E题解)

    Codeforces Round #538 (Div. 2) 题目链接:https://codeforces.com/contest/1114 A. Got Any Grapes? 题意: 有三个人, ...

  6. B. Light It Up 思维题

    Recently, you bought a brand new smart lamp with programming features. At first, you set up a schedu ...

  7. ubuntu12.04 Qt WebKit编译

    转载自:http://my.oschina.net/u/257674/blog/167050 官方文档: http://trac.webkit.org/wiki/BuildingQtOnLinux#D ...

  8. L3-003. 社交集群(并查集)

    L3-003. 社交集群 时间限制 1000 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 在社交网络平台注册时,用户通常会输入自己的兴趣爱好, ...

  9. 【Foreign】字符串匹配 [KMP]

    字符串匹配 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output Sample Input 3 3 6 3 1 2 1 2 ...

  10. Vijos 1232 核电站问题

    核电站问题 描述 一个核电站有N个放核物质的坑,坑排列在一条直线上.如果连续M个坑中放入核物质,则会发生爆炸,于是,在某些坑中可能不放核物质. 现在,请你计算:对于给定的N和M,求不发生爆炸的放置核物 ...