Description

Mad scientist Mike has constructed a rooted tree, which consists of nnvertices. Each vertex is a reservoir which can be either empty or filled with water.

The vertices of the tree are numbered from 1 to nn with the root at vertex 1. For each vertex, the reservoirs of its children are located below the reservoir of this vertex, and the vertex is connected with each of the children by a pipe through which water can flow downwards.

Mike wants to do the following operations with the tree:

  1. Fill vertex vv with water. Then vv and all its children are filled with water.

  2. Empty vertex vv . Then vv and all its ancestors are emptied.

  3. Determine whether vertex vv is filled with water at the moment.

    Initially all vertices of the tree are empty.Mike has already compiled a full list of operations that he wants to perform in order. Before experimenting with the tree Mike decided to run the list through a simulation. Help Mike determine what results will he get after performing all the operations.

Input

The first line of the input contains an integer \(n ( 1<=n<=500000\) ) — the number of vertices in the tree. Each of the following n-1n−1 lines contains two space-separated numbers \(a_{i}, b_{i}\) ( \(1<=a_{i},b_{i}<=n, a_{i}≠b_{i}\) ) — the edges of the tree.

The next line contains a number \(q ( 1<=q<=500000 )\) — the number of operations to perform. Each of the following \(q\) lines contains two space-separated numbers \(c_{i}( 1<=c_{i}<=3\) ), \(v_{i}\)( \(1<=v_{i}<=n\) ), where \(c_{i}\) is the operation type (according to the numbering given in the statement), and \(v_{i}\) is the vertex on which the operation is performed.

It is guaranteed that the given graph is a tree.

Output

For each type 3 operation print 1 on a separate line if the vertex is full, and 0 if the vertex is empty. Print the answers to queries in the order in which the queries are given in the input.

你不需要理解题意,你只需要知道,这是一个树剖裸题(虽然我没一遍切。)

支持三种操作(初始值全部为\(0\))

  • 1.将节点\(v\)及其子树赋值为\(1\).
  • 2.将节点\(v\)到根节点\(1\)的路径上的点的值置为\(0\).
  • 3.查询当前节点\(v\)的值。(只会为\(0\)或\(1\))

对于每个操作\(3\),输出一行。(具体见代码好了

这是一个不完整的树剖,我没建树,有没用到反\(dfs\)序。 emmm

代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define R register using namespace std; const int gz=500001; inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int head[gz],tot,n,m; struct cod{int u,v;}edge[gz<<1]; inline void add(R int x,R int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
} int dfn[gz],idx,son[gz],f[gz],depth[gz],size[gz],top[gz]; void dfs1(R int u,R int fa)
{
f[u]=fa;depth[u]=depth[fa]+1;size[u]=1;
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs1(edge[i].v,u);
size[u]+=size[edge[i].v];
if(son[u]==-1 or size[son[u]]<size[edge[i].v])
son[u]=edge[i].v;
}
} void dfs2(R int u,R int t)
{
dfn[u]=++idx;top[u]=t;
if(son[u]==-1)return ;
dfs2(son[u],t);
for(R int i=head[u];i;i=edge[i].u)
{
if(dfn[edge[i].v])continue;
dfs2(edge[i].v,edge[i].v);
}
} int tg[gz<<2],tr[gz<<2]; #define ls o<<1
#define rs o<<1|1 inline void down(R int o)
{
if(tg[o]==-1)return;
tg[ls]=tg[rs]=tg[o];
tr[ls]=tr[rs]=tr[o];
tg[o]=-1;
return ;
} void change(R int o,R int l,R int r,R int x,R int y,R int k)
{
if(x<=l and y>=r){tr[o]=tg[o]=k;return;}
down(o);
R int mid=(l+r)>>1;
if(x<=mid)change(ls,l,mid,x,y,k);
if(y>mid)change(rs,mid+1,r,x,y,k);
} int query(R int o,R int l,R int r,R int pos)
{
if(l==r)return tr[o];
down(o);
R int mid=(l+r)>>1;
if(pos<=mid)return query(ls,l,mid,pos);
else return query(rs,mid+1,r,pos);
} inline void tchange(R int x,R int y)
{
R int fx=top[x],fy=top[y];
while(fx!=fy)
{
if(depth[fx]>depth[fy])
{
change(1,1,n,dfn[fx],dfn[x],0);
x=f[fx];
}
else
{
change(1,1,n,dfn[fy],dfn[y],0);
y=f[fy];
}
fy=top[y],fx=top[x];
}
if(dfn[x]>dfn[y])swap(x,y);
change(1,1,n,dfn[x],dfn[y],0);
return ;
} int main()
{
in(n);memset(son,-1,sizeof son);
for(R int i=1,x,y;i<n;i++)
{
in(x),in(y);
add(x,y),add(y,x);
}
dfs1(1,0);dfs2(1,1);memset(tg,-1,sizeof tg);
in(m);
for(R int i=1,opt,v;i<=m;i++)
{
in(opt);
switch(opt)
{
case 1:in(v);change(1,1,n,dfn[v],dfn[v]+size[v]-1,1);break;
case 2:in(v);tchange(1,v);break;
case 3:in(v);printf("%d\n",query(1,1,n,dfn[v]));break;
}
}
}

树链剖分【CF343D】Water Tree的更多相关文章

  1. 【BZOJ3626】LCA(树链剖分,Link-Cut Tree)

    [BZOJ3626]LCA(树链剖分,Link-Cut Tree) 题面 Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. ...

  2. 【BZOJ2157】旅游(树链剖分,Link-Cut Tree)

    [BZOJ2157]旅游(树链剖分,Link-Cut Tree) 题面 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥 ...

  3. 洛谷P4482 [BJWC2018]Border 的四种求法 字符串,SAM,线段树合并,线段树,树链剖分,DSU on Tree

    原文链接https://www.cnblogs.com/zhouzhendong/p/LuoguP4482.html 题意 给定一个字符串 S,有 q 次询问,每次给定两个数 L,R ,求 S[L.. ...

  4. 树链剖分 (求LCA,第K祖先,轻重链剖分、长链剖分)

      2020/4/30   15:55 树链剖分是一种十分实用的树的方法,用来处理LCA等祖先问题,以及对一棵树上的节点进行批量修改.权值和查询等有奇效. So, what is 树链剖分? 可以简单 ...

  5. Codeforces Round #200 (Div. 1) D Water Tree 树链剖分 or dfs序

    Water Tree 给出一棵树,有三种操作: 1 x:把以x为子树的节点全部置为1 2 x:把x以及他的所有祖先全部置为0 3 x:询问节点x的值 分析: 昨晚看完题,马上想到直接树链剖分,在记录时 ...

  6. Codeforces Round #200 (Div. 1) D. Water Tree 树链剖分+线段树

    D. Water Tree time limit per test 4 seconds memory limit per test 256 megabytes input standard input ...

  7. Water Tree(树链剖分+dfs时间戳)

    Water Tree http://codeforces.com/problemset/problem/343/D time limit per test 4 seconds memory limit ...

  8. CodeForces 343D water tree(树链剖分)

    Mad scientist Mike has constructed a rooted tree, which consists of n vertices. Each vertex is a res ...

  9. Codeforces 343D Water Tree & 树链剖分教程

    原题链接 题目大意 给定一棵根为1,初始时所有节点值为0的树,进行以下三个操作: 将以某点为根的子树节点值都变为1 将某个节点及其祖先的值都变为0 *询问某个节点的值 解题思路 这是一道裸的树链剖分题 ...

  10. Water Tree CodeForces 343D 树链剖分+线段树

    Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...

随机推荐

  1. 【南开OJ2264】节操大师(贪心+二分+并查集/平衡树)

    好久没更新了,今天就随便写一个吧 题目内容 MK和他的小伙伴们(共n人,且保证n为2的正整数幂)想要比试一下谁更有节操,于是他们组织了一场节操淘汰赛.他们的比赛规则简单而暴力:两人的节操正面相撞,碎的 ...

  2. [洛谷P1231] 教辅的组成

    题目大意:有n1本书,n2本练习册和n3个答案,然后又一些条件,说明某本答案可能和某本书对应,某本练习册可能和某本书对应,求最多有多少本完整的书(有书,练习册,答案) 题解:网络流,对应就连边,然后考 ...

  3. 02.Java面向对象问题

    目录介绍 2.0.0.1 重载和重写的区别?重载和重写绑定机制有何区别?父类的静态方法能否被子类重写? 2.0.0.2 封装.继承.多态分别是什么? 2.0.0.3 接口和抽象类的区别是什么?接口的意 ...

  4. 洛谷 P2480 [SDOI2010]古代猪文 解题报告

    P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...

  5. 禁止 iphone 网页上下拖动露底

    document.addEventListener('touchmove', function(e) { e.preventDefault();});

  6. import pymongo exceptions.ImportError: No module named pymongo

    最近用Scrapy写爬虫,将爬取的数据存入Mongodb中,使用的是pymongo这个库,但是运行的时候报错如标题所示 搜了好多网站包括stackoverflow都没有解决,后来发现自己用的是虚拟环境 ...

  7. delegate, event - 里面涉及的参数类型必须完全一致,子类是不行的

    public void TestF() { Test += Fun; } public void Fun(Person p) { }  // 如 Person变成 SubPerson,则报错..pub ...

  8. jsp和servlet之间传数据

    一.jsp与java文件传递数据可以使用Servlet类来传递,jsp将数据存入到request对象中,Servlet类获取这个request对象,并将数据取出. 示例代码如下: JSP代码: < ...

  9. php7安装及和php5的共存

    http://blog.csdn.net/liuxinmingcode/article/details/50319145 http://www.jb51.net/article/109228.htm ...

  10. 【 浅谈Linux路由机制 】

    以下均为个人实验验证结果,如有问题,恳请指正. 现在服务器一般都有四张网卡,给了我们更多网络模型的选择.为了业务的需求,有时我们需要如下网络架构 系统:centos 7.2 x64 两张网卡不在同一个 ...