PSTAT 115 Homework4 课业解析

题意:

蒙特卡洛采样之拒绝采样

解析:

给定一个概率分布p(z)=p~(z)/Zp,p~(z)已知,Zp为归一化常数,为未知数。对该分布进行拒绝采样,我们引入一个简单地参考分布,记作q(x),q(x)分布的采样是易于实现的,比如均匀分布。再引入一个常数k,满足kq(z)>p~(z)。每次采样中首先从q(z)采样一个数值z0,然后在区间[0,kq(z0)]进行均匀采样,得到u0。如果u0<p~(z0),则保留该采样值,否则丢弃该采样值。最后得到的数据就是一个对该分布的近似采样。为了提高接受效率,防止舍弃过多的采样值而导致采样效率低下,k值应该满足在kq(z)>p~(z)的基础上尽可能小。

涉及知识点:

拒绝采样

更多可+薇❤讨论:Rainbow890722

pdf

Homework 4

PSTAT 115, Fall 2019

Due on November 3, 2019 at 11:59 pm

Note: If you are working with a partner, please submit only one homework per group with both names

and whether you are taking the course for graduate credit or not. Submit your Rmarkdown (.Rmd) and the

compiled pdf on Gauchospace.

1. Rejection Sampling the Beta distribution. Assume we did not have access to the rbeta function for

sampling from a Beta, but we were able to evaluate the density, dbeta. This is a very common setting

in Bayesian statistics, since we can always evaluate the (proportional) posterior density p(θ | y) ∝ p(y |

θ)p(θ) but we don’t have immediate access to a method for sampling from this distribution.

(a) Let p(x) be a Beta(3, 9) density, q1(x) a Uniform(0, 1) density, and q2(x) a Normal(µ = 0.25, σ =

0.15) density.

(b) Use rejection sampling to sample from p(x) by proposing samples from q1(x). To do so, first find

M1 = max

x

p(x)/q1(x) using the optimize function and set lower=0, upper=1, and maximum =

TRUE (since we are maximizing not minimizing, the default). M will be the value in the objective

argument returned by optimize (maximum tells us where the maximum occurs, but not what height

it achieves). Propose 10000 samples and keep only the accepted samples.

(c) Use rejection sampling to sample from p(x) by proposing samples from q2(x). To do this you

need to find M2 = max

x

p(x)/q2(x) as above. Propose 10000 samples and keep only the accepted

samples.

(d) Plot the p(x), M1q1(x) and M2q2(x) all on the same plot and verify visually that the scaled

proposal densities “envelope” the target, p(x). Set the xlimits of the plot from 0 to 1. Use different

color lines for the various densities so are clearly distinguishable.

(e) Which rejection sampler had the higher rejection rate? Why does this make sense given the plot

from the previous part? This means when proposing 10000 samples from each proposal, the Monte

Carlo error of our approximation will be higher when proposing from ____ (choose q1 or q2).

(f) Report the variance of Beta(3, 9) distribution by computing the variance of the beta samples. How

does this compare to the theoretical variance (refer to the probability cheatsheet).

2. Interval estimation with rejection sampling.

(a) Use rejection sampling to sample from the following density:

p(x) = 1

4

|sin(x)| × I{x ∈ [0, 2π]}

Use a proposal density which is uniform from 0 to 2π and generate at least 1000 true samples from

p(x). Compute and report the Monte Carlo estimate of the upper and lower bound for the 50%

quantile interval using the quantile function on your samples. Compare this to the 50% HPD

region calculated on the samples. What are the bounds on the HPD region? Report the length of

the quantile interval and the total length of the HPD region. What explains the difference? Hint:

to compute the HPD use the hdi function from the HDInterval package. As the first argument

pass in density(samples), where samples is the name of your vector of true samples from the

density. Set the allowSplit argument to true and use the credMass argument to set the total

probability mass in the HPD region to 50%.

(b) Plot p(x) using the curve function (base plotting) or stat_function (ggplot). Add lines corresponding to the intervals / probability regions computed in the previous part to your plot using

1

them segments function (base plotting) or geom_segements (ggplot). To ensure that the lines

don’t overlap visually, for the HPD region set the y-value of the segment to 0 and for the quantile

interval set the y-value to to 0.01. Make the segments for HPD region and the segment for quantile

interval different colors. Report the length of the quantile interval and the total length of the HPD

region, verifying that indeed the HPD region is smaller.

PSTAT 115 Homework4 课业解析的更多相关文章

  1. android中使用DisplayMetrics获取屏幕参数

    --关于Density int android.graphics.Bitmap.getDensity(),返回bitmap-density(密度).默认的density就是当前display-dens ...

  2. 【算法】(查找你附近的人) GeoHash核心原理解析及代码实现

    本文地址 原文地址 分享提纲: 0. 引子 1. 感性认识GeoHash 2. GeoHash算法的步骤 3. GeoHash Base32编码长度与精度 4. GeoHash算法 5. 使用注意点( ...

  3. CSharpGL(9)解析OBJ文件并用CSharpGL渲染

    CSharpGL(9)解析OBJ文件并用CSharpGL渲染 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码中包含10多个独立的Demo ...

  4. Sharepoint学习笔记—习题系列--70-576习题解析 -(Q112-Q115)

    Question  112 You are designing a public-facing SharePoint 2010 Web site for an elementary school th ...

  5. 【Jsoup网页解析】

    下载链接:http://jsoup.org/download 一.普通的请求方式(不带有cookie) 使用举例: 第一步: Connection conn=Jsoup.connect(url); 第 ...

  6. Java集合---Array类源码解析

    Java集合---Array类源码解析              ---转自:牛奶.不加糖 一.Arrays.sort()数组排序 Java Arrays中提供了对所有类型的排序.其中主要分为Prim ...

  7. 书籍推荐《以C语言解析电脑》

    这本书要想买到,在大陆看起来比较难,理出个目录,看个大概: 另外在这个地方可以预览前20页:http://openebook.hyread.com.tw/ebookservice/hyviewer/o ...

  8. 深度解析SDN——利益、战略、技术、实践(实战派专家力作,业内众多专家推荐)

    深度解析SDN——利益.战略.技术.实践(实战派专家力作,业内众多专家推荐) 张卫峰 编   ISBN 978-7-121-21821-7 2013年11月出版 定价:59.00元 232页 16开 ...

  9. 115个Java面试题和答案——终极列表(下)

    第一篇讨论了面向对象编程和它的特点,关于Java和它的功能的常见问题,Java的集合类,垃圾收集器,本章主要讨论异常处理,Java小应用程序,Swing,JDBC,远程方法调用(RMI),Servle ...

随机推荐

  1. 使用docker安装mysql并连接

    1.查找镜像: docker search mysql 也可以去官网查看镜像tag,选择自己需要的版本,否则会下载最新版本:https://hub.docker.com/_/mysql/ 2.下载镜像 ...

  2. SpringBootSecurity学习(09)网页版登录配置Session共享

    场景 当后台项目由部署在一台改为部署在多台以后,解决session共享问题最常用的办法就是把session存储在redis等缓存中.关于session和cookie概念这里就不再赘述了,在spring ...

  3. jQuery常用方法(五)-jQuery CSS

    JQuery CSS 方法说明 css( name ) 访问第一个匹配元素的样式属性. css( properties ) 把一个"名/值对"对象设置为所有匹配元素的样式属性. $ ...

  4. CSS技巧 (2) · 多列等高布局

    前言  最近,面试的时候都碰到一些关于利用CSS实现多列等高布局或者一侧宽度固定,另一侧宽度自适应的问题,下面稍微总结一下: 先看一道题目 巧妙的多列等高布局 规定下面的布局,实现多列等高布局,要求两 ...

  5. 是男人就过八题A_A String Game题解

    题意 给一个字符串\(s\),和\(n\)个子串\(t[i]\),两个人博弈,每次取出一个串\(t[i]\),在后面加入一个字符,保证新字符串仍然是\(s\)的子串,无法操作的人输. 分析 n个子串, ...

  6. Spring Boot(四) Mybatis-MySql

    Spring Boot(四) Mybatis-MySql 0.准备数据库表 -- ---------------------------- -- Table structure for person ...

  7. Python入门系列【附】进阶教程

    如题,本篇将讲解Python提升之路:Python作为语法简单易学的语言,入门容易精通却很难,这是共识,那么为什么会有这样的共识?精通Python的难度在哪里? Python拥有简单.形象.直观的语法 ...

  8. IoC 之装载 BeanDefinitions 总结

    最近时间重新对spring源码进行了解析,以便后续自己能够更好的阅读spring源码,想要一起深入探讨请加我QQ:1051980588 ClassPathResource resource = new ...

  9. ORM查询简化

    文章出处 https://www.cnblogs.com/wupeiqi/articles/6216618.html 字段 常用字段 AutoField(Field) - int自增列,必须填入参数 ...

  10. 超详细!! sql server 同步数据库 发布 订阅 跨网段 无公网ip 常见问题

    问题描述 主机1:发布端 阿里云服务器--有公网ip 主机2:订阅端 笔记本--无公网ip 数据量很小,主要是熟悉发布订阅的操作流程. 主机2仅仅作为主机1的本地备份,要求修改云服务器上数据后,能通过 ...