PSTAT 115 Homework4 课业解析
PSTAT 115 Homework4 课业解析
题意:
蒙特卡洛采样之拒绝采样
解析:
给定一个概率分布p(z)=p~(z)/Zp,p~(z)已知,Zp为归一化常数,为未知数。对该分布进行拒绝采样,我们引入一个简单地参考分布,记作q(x),q(x)分布的采样是易于实现的,比如均匀分布。再引入一个常数k,满足kq(z)>p~(z)。每次采样中首先从q(z)采样一个数值z0,然后在区间[0,kq(z0)]进行均匀采样,得到u0。如果u0<p~(z0),则保留该采样值,否则丢弃该采样值。最后得到的数据就是一个对该分布的近似采样。为了提高接受效率,防止舍弃过多的采样值而导致采样效率低下,k值应该满足在kq(z)>p~(z)的基础上尽可能小。
涉及知识点:
拒绝采样
更多可+薇❤讨论:Rainbow890722
Homework 4
PSTAT 115, Fall 2019
Due on November 3, 2019 at 11:59 pm
Note: If you are working with a partner, please submit only one homework per group with both names
and whether you are taking the course for graduate credit or not. Submit your Rmarkdown (.Rmd) and the
compiled pdf on Gauchospace.
1. Rejection Sampling the Beta distribution. Assume we did not have access to the rbeta function for
sampling from a Beta, but we were able to evaluate the density, dbeta. This is a very common setting
in Bayesian statistics, since we can always evaluate the (proportional) posterior density p(θ | y) ∝ p(y |
θ)p(θ) but we don’t have immediate access to a method for sampling from this distribution.
(a) Let p(x) be a Beta(3, 9) density, q1(x) a Uniform(0, 1) density, and q2(x) a Normal(µ = 0.25, σ =
0.15) density.
(b) Use rejection sampling to sample from p(x) by proposing samples from q1(x). To do so, first find
M1 = max
x
p(x)/q1(x) using the optimize function and set lower=0, upper=1, and maximum =
TRUE (since we are maximizing not minimizing, the default). M will be the value in the objective
argument returned by optimize (maximum tells us where the maximum occurs, but not what height
it achieves). Propose 10000 samples and keep only the accepted samples.
(c) Use rejection sampling to sample from p(x) by proposing samples from q2(x). To do this you
need to find M2 = max
x
p(x)/q2(x) as above. Propose 10000 samples and keep only the accepted
samples.
(d) Plot the p(x), M1q1(x) and M2q2(x) all on the same plot and verify visually that the scaled
proposal densities “envelope” the target, p(x). Set the xlimits of the plot from 0 to 1. Use different
color lines for the various densities so are clearly distinguishable.
(e) Which rejection sampler had the higher rejection rate? Why does this make sense given the plot
from the previous part? This means when proposing 10000 samples from each proposal, the Monte
Carlo error of our approximation will be higher when proposing from ____ (choose q1 or q2).
(f) Report the variance of Beta(3, 9) distribution by computing the variance of the beta samples. How
does this compare to the theoretical variance (refer to the probability cheatsheet).
2. Interval estimation with rejection sampling.
(a) Use rejection sampling to sample from the following density:
p(x) = 1
4
|sin(x)| × I{x ∈ [0, 2π]}
Use a proposal density which is uniform from 0 to 2π and generate at least 1000 true samples from
p(x). Compute and report the Monte Carlo estimate of the upper and lower bound for the 50%
quantile interval using the quantile function on your samples. Compare this to the 50% HPD
region calculated on the samples. What are the bounds on the HPD region? Report the length of
the quantile interval and the total length of the HPD region. What explains the difference? Hint:
to compute the HPD use the hdi function from the HDInterval package. As the first argument
pass in density(samples), where samples is the name of your vector of true samples from the
density. Set the allowSplit argument to true and use the credMass argument to set the total
probability mass in the HPD region to 50%.
(b) Plot p(x) using the curve function (base plotting) or stat_function (ggplot). Add lines corresponding to the intervals / probability regions computed in the previous part to your plot using
1
them segments function (base plotting) or geom_segements (ggplot). To ensure that the lines
don’t overlap visually, for the HPD region set the y-value of the segment to 0 and for the quantile
interval set the y-value to to 0.01. Make the segments for HPD region and the segment for quantile
interval different colors. Report the length of the quantile interval and the total length of the HPD
region, verifying that indeed the HPD region is smaller.
PSTAT 115 Homework4 课业解析的更多相关文章
- android中使用DisplayMetrics获取屏幕参数
--关于Density int android.graphics.Bitmap.getDensity(),返回bitmap-density(密度).默认的density就是当前display-dens ...
- 【算法】(查找你附近的人) GeoHash核心原理解析及代码实现
本文地址 原文地址 分享提纲: 0. 引子 1. 感性认识GeoHash 2. GeoHash算法的步骤 3. GeoHash Base32编码长度与精度 4. GeoHash算法 5. 使用注意点( ...
- CSharpGL(9)解析OBJ文件并用CSharpGL渲染
CSharpGL(9)解析OBJ文件并用CSharpGL渲染 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码中包含10多个独立的Demo ...
- Sharepoint学习笔记—习题系列--70-576习题解析 -(Q112-Q115)
Question 112 You are designing a public-facing SharePoint 2010 Web site for an elementary school th ...
- 【Jsoup网页解析】
下载链接:http://jsoup.org/download 一.普通的请求方式(不带有cookie) 使用举例: 第一步: Connection conn=Jsoup.connect(url); 第 ...
- Java集合---Array类源码解析
Java集合---Array类源码解析 ---转自:牛奶.不加糖 一.Arrays.sort()数组排序 Java Arrays中提供了对所有类型的排序.其中主要分为Prim ...
- 书籍推荐《以C语言解析电脑》
这本书要想买到,在大陆看起来比较难,理出个目录,看个大概: 另外在这个地方可以预览前20页:http://openebook.hyread.com.tw/ebookservice/hyviewer/o ...
- 深度解析SDN——利益、战略、技术、实践(实战派专家力作,业内众多专家推荐)
深度解析SDN——利益.战略.技术.实践(实战派专家力作,业内众多专家推荐) 张卫峰 编 ISBN 978-7-121-21821-7 2013年11月出版 定价:59.00元 232页 16开 ...
- 115个Java面试题和答案——终极列表(下)
第一篇讨论了面向对象编程和它的特点,关于Java和它的功能的常见问题,Java的集合类,垃圾收集器,本章主要讨论异常处理,Java小应用程序,Swing,JDBC,远程方法调用(RMI),Servle ...
随机推荐
- Scala Basis
基础 Scala 中数据类型也是 class 7 种数值类型: Byte, Char, Short, Int, Long, Float, and Double Boolean 类型 原始类型与 cla ...
- Centos7搭建Scrapy爬虫环境
写在前面 因为之前的爬虫环境一直是部署在我自己本地的电脑上的,最近,写了一个监控别人空间的爬虫,需要一直线上24小时运行,所有就打算云服务器上部署环境,也捣鼓了好一会才弄好,还是有一些坑,这里先记录一 ...
- hbase配置-集群无法启动问题
root@cslave2:/]#jps 2834 NodeManager 2487 DataNode 12282 Jps 2415 QuorumPeerMain root@cslave2:/]#sud ...
- Cisco交换机、路由器,密码恢复
一.路由器密码恢复 1.重启路由器,同时按下ctrl + breack键中断IOS的加载,路由器进入ROM Monitor模式 2.将配置寄存器的值更改为 0x2142,表示在启动时忽略startup ...
- js数组的增删改查
array 数组的增删改: push 从数组后面推入一个元素或多个元素 var arr = [1,2,3]; // 返回:修改后数组的长度 arr.push(4,5,6); pop 删除数组最后一 ...
- Java中类加载和反射技术实例
我们知道一个对象在运行时有两种类型,一个是编译类型,一个是运行时类型.在程序运行时,往往是需要发现类和对象的真实的信息的.那么如何获的这种信息呢? 其一,如果我们在编译和运行时都知道类型的具体信息,这 ...
- Android开发——Toolbar常用设置
本篇笔记用来记录常用的Toolbar设置,如Toolbar颜色设置,显示返回按钮,显示右边三个点按钮 之前Android 使用的ActionBar,Android5.0开始,谷歌官方推荐使用Toolb ...
- 使用.NET Core中创建Windows服务(一) - 使用官方推荐方式
原文:Creating Windows Services In .NET Core – Part 1 – The "Microsoft" Way 作者:Dotnet Core Tu ...
- 视图向控制器传参@RequestMapping()和@RequestParam()
@RequestMapping()和@RequestParam()注解在spring-web-4.3.18.RELEASE.jar包下,当然可以是其他版本,所在包名如下: @RequestMappin ...
- 利用procedure批量插入数据
正文 要求在页面查询到5000条数据,为了方便插入,准备用shell脚本写curl命令调用自己写的代码接口,但是速度慢,而且写的时候遇到点儿小问题,故用sql语句写了这个功能 由于operat ...