题目链接:https://www.luogu.org/problemnew/show/P5018

花絮:这道题真的比历年的t4都简单的多呀,而且本蒟蒻做得出t4做不出t3呜呜呜。。。

这道题可以是一只披着狼皮的羊了,全篇字字不离树,二叉树,然鹅却只需要会搜索就能解决。

在前些日子复习的时候并没有考虑的普及组会出于数据结构有关的题目,于是大多数时间只是放在搜索,模拟,简单dp上,只为了以防不测练了个dijkstra模板,考试时看到了这题果断骗分,结果敲完后去了趟厕所才发现搜索跑个‘暴力’也行啊,至少即便T了也多A几个点。

写到只剩30分钟是才过了全部样例,测了两三个卡自己的也过了,于是转颓T3,居然发现把30分的骗分写炸了。。。

下面进入正题。

分析:

考虑到我们可以从节点1(即树根开始搜索),dfs,搜到一个点先判断它存不存在,如果存在,先把他的两个子节点都搜上。然后开个c数组记录当前最大的节点数,当然权值也要累加,为了之后作为判断条件之一,然后我们尝试用c[i]更新答案,条件是必须大于当前答案,并且两个子节点形成对称,即可。主题思路已经讲出,接下来在代码中注释。

代码:

#include<cstdio>
using namespace std;
int v[1000005],ch[1000005][2],c[1000005],n,ans;
bool same(int a,int b)//判断两节点是否对称
{
if(a==b)return 1;
if(!a||!b)return 0;
return v[a]==v[b]&&same(ch[a][1],ch[b][2])&&same(ch[a][2],ch[b][1]);
}
void dfs(int i)//大法师搜索
{
if(!i)return;
dfs(ch[i][1]);
dfs(ch[i][2]);
c[i]=1+c[ch[i][1]]+c[ch[i][2]];
v[i]=v[i]+v[ch[i][1]]+v[ch[i][2]];
if(ans<c[i]&&same(ch[i][1],ch[i][2]))ans=c[i];
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&v[i]);
v[0]=1005;
for(int i=1;i<=n;i++)
for(int k=1;k<=2;++k)
{
scanf("%d",&ch[i][k]);
if(ch[i][k]==-1)ch[i][k]=0;//清为0,好判断
}
dfs(1);
printf("%d",ans);
return 0;//the end
}
~完结✿✿ヽ(°▽°)ノ✿

注:此代码并非蒟蒻考场所写

NOIP2018普及T4暨洛谷P5018 对称二叉树题解的更多相关文章

  1. NOIP2018普及T1暨洛谷P5015 标题统计 题解

    题目链接:https://www.luogu.org/problemnew/show/P5015 分析: 这道题大概是给个签到分吧.很显然的字符串操作.本篇题解主要帮助初学者,请大佬略过. 首先给大家 ...

  2. 洛谷P5018 对称二叉树——hash

    给一手链接 https://www.luogu.com.cn/problem/P5018 这道题其实就是用hash水过去的,我们维护两个hash 一个是先左子树后右子树的h1 一个是先右子树后左子树的 ...

  3. 洛谷P5018 对称二叉树

    不多扯题目 直接题解= = 1.递归 由题目可以得知,子树既可以是根节点和叶节点组成,也可以是一个节点,题意中的对称二叉子树是必须由一个根节点一直到树的最底部所组成的树. 这样一来就简单了,我们很容易 ...

  4. NOIP2018普及T2暨洛谷P5016 龙虎斗

    题目链接:https://www.luogu.org/problemnew/show/P5016 分析: 这是一道模拟题.看到题目,我们首先要把它细致的读明白,模拟题特别考察细节,往往会有想不到的坑点 ...

  5. 洛谷 P5018 对称二叉树

    题目传送门 解题思路: 先计算每个点的子树有多少节点,然后判断每个子树是不是对称的,更新答案. AC代码: #include<iostream> #include<cstdio> ...

  6. 洛谷 P5018 对称二叉树(搜索)

    嗯... 题目链接:https://www.luogu.org/problem/P5018 其实这道题直接搜索就可以搜满分: 首先递归把每个点作为根节点的儿子的数量初始化出来,然后看这个节点作为根节点 ...

  7. 【洛谷P5018 对称二叉树】

    话说这图也太大了吧 这题十分的简单,我们可以用两个指针指向左右两个对称的东西,然后比较就行了 复杂度O(n*logn) #include<bits/stdc++.h> using name ...

  8. P5018 对称二叉树题解

    题目内容链接: 那么根据题意,上图不是对称二叉树,只有节点7的子树是: 通俗来说,对称二叉树就是已一个节点x为根的子树有穿过x点的对称轴并且对称轴两边的对称点的大小也必须相等,那么这棵树就是对称二叉树 ...

  9. 洛谷P1040 加分二叉树题解

    dp即可 \(f[i][j]\)表示i到j的加分 相当于区间dp了 #include<cstdio> using namespace std; int v[50]; int f[55][5 ...

随机推荐

  1. LINQ学习笔记(一)

    LINQ,语言集成查询(Language Integrated Query)是一组用于C#和Visual Basic语言的扩展. 它允许编写C#或Visual Basic代码以查询数据库相同的方法操作 ...

  2. 重写QLineEdit,实现编辑框内添加删除按钮的功能(随时把控件Move到一个地方,然后show就可以了,这是万能的办法)

    http://www.qtcn.org/bbs/read-htm-tid-62265-ds-1-page-1.html#180286

  3. UILabel实现自适应宽高需要注意的地方(二)

    需求图如下所示   UILabel "上期"   距离屏幕最左边 有35px UILabel "下期"   距离屏幕最右边 有35px 进行中文字在UIlabe ...

  4. java集合框架collection(3)Set、List和Map

    Set.List和Map是java collection中最常用的三种数据结构. Set是集合,不允许有重复的元素,List是动态数组实现的列表,有序可重复,Map是key-value的键值对,用于快 ...

  5. Eclipse远程代码调试

    前提:远程服务器上运行的WEB项目class对应的源码与本地项目中必须保持一致 也就是远程tomcat部署的项目就是本机项目打包过去的,而本机项目没有发生变动. 1.配置$tomcat_home/bi ...

  6. element-ui源码之组件通信那些事

    最近在用element-ui重构前端项目,无意之中翻阅到一个比较好用的组件间通信方式,借助于vue的封装的发布-订阅消息模式与mixin语法.在开始之前先总结下vue常用的组件间通信方式,具体如下: ...

  7. 高并发 Nginx+Lua OpenResty系列(9)——HTTP服务

    此处我说的HTTP服务主要指如访问京东网站时我们看到的热门搜索.用户登录.实时价格.实时库存.服务支持.广告语等这种非Web页面,而是在Web页面中异步加载的相关数据.这些服务有个特点即访问量巨大.逻 ...

  8. PATB 1038. 统计同成绩学生(20)

    https://www.patest.cn/contests/pat-b-practise/1038 #include <cstdio> int cnt[110]; int temp[10 ...

  9. Linux命令分类汇总(1~6)

    Linux命令分类汇总 序号 命令 参数 英文释义 功能说明 (一)线上查询及帮助命令(2个) 1 man manual 查看命令帮助,命令的词典,还有info 2 help h 查看Linux内置命 ...

  10. Linux使用socks代理

    安装一些依赖 yum install epel-release yum install python-pip python-devel gcc gcc-c++ cmake git 安装shadowso ...