hdu-6638 Snowy Smile
题目链接
Problem Description
There are n pirate chests buried in Byteland, labeled by 1,2,…,n. The i-th chest's location is (xi,yi), and its value is wi, wi can be negative since the pirate can add some poisonous gases into the chest. When you open the i-th pirate chest, you will get wi value.
You want to make money from these pirate chests. You can select a rectangle, the sides of which are all paralleled to the axes, and then all the chests inside it or on its border will be opened. Note that you must open all the chests within that range regardless of their values are positive or negative. But you can choose a rectangle with nothing in it to get a zero sum.
Please write a program to find the best rectangle with maximum total value.
Input
The first line of the input contains an integer T(1≤T≤100), denoting the number of test cases.
In each test case, there is one integer n(1≤n≤2000) in the first line, denoting the number of pirate chests.
For the next n lines, each line contains three integers xi,yi,wi(−109≤xi,yi,wi≤109), denoting each pirate chest.
It is guaranteed that ∑n≤10000.
Output
For each test case, print a single line containing an integer, denoting the maximum total value.
Sample Input
2
4
1 1 50
2 1 50
1 2 50
2 2 -500
2
-1 1 5
-1 1 1
Sample Output
100
6
题意
平面上有n个点,每个点有价值\(w_i\),可以任意选一个矩形,获取矩形内所有点的值,求最大的价值和为多少
题解
先对所有点坐标离散化,枚举矩形上界,对于上界及以下的点,以y坐标相等的点为一组,按y从大到小,一组一组的插入线段树,每插入完一组点,用线段树求出当前的最大子段和,整个过程相当于在枚举矩形上下界,利用线段树维护最大子段和。
线段树每个节点维护:区间和,左端点向右最大子段和,右端点向左最大子段和,区间最大子段和,用类似区间合并的方式合并
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mx = 2005;
const ll INF = 1e18;
bool vis[mx][mx];
struct Node {
int x, y, w;
int p, q;
}node[mx];
vector <int> vx, vy;
vector <Node> mp[mx];
int getidx(int x) {
return lower_bound(vx.begin(), vx.end(), x) - vx.begin() + 1;
}
int getidy(int y) {
return lower_bound(vy.begin(), vy.end(), y) - vy.begin() + 1;
}
struct Tree {
ll sum;
ll Lans, Rans, ans;
}tree[mx<<2];
void pushUp(int rt) {
tree[rt].ans = max(max(tree[rt<<1].ans, tree[rt<<1|1].ans), tree[rt<<1].Rans+tree[rt<<1|1].Lans);
tree[rt].Lans = max(tree[rt<<1].Lans, tree[rt<<1].sum+tree[rt<<1|1].Lans);
tree[rt].Rans = max(tree[rt<<1|1].Rans, tree[rt<<1|1].sum+tree[rt<<1].Rans);
tree[rt].sum = tree[rt<<1].sum + tree[rt<<1|1].sum;
}
void build(int l, int r, int rt) {
if (l == r) {
tree[rt].sum = tree[rt].Lans = tree[rt].Rans = tree[rt].ans = 0;
return;
}
int mid = (l + r) / 2;
build(l, mid, rt<<1);
build(mid+1, r, rt<<1|1);
pushUp(rt);
}
void update(int pos, int val, int l, int r, int rt) {
if (l == r) {
tree[rt].sum += val;
tree[rt].Lans = tree[rt].Rans = tree[rt].ans = tree[rt].sum;
return;
}
int mid = (l + r) / 2;
if (pos <= mid) update(pos, val, l, mid, rt<<1);
else update(pos, val, mid+1, r, rt<<1|1);
pushUp(rt);
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
vx.clear(); vy.clear();
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d%d%d", &node[i].x, &node[i].y, &node[i].w);
vx.push_back(node[i].x);
vy.push_back(node[i].y);
}
sort(vx.begin(), vx.end()); sort(vy.begin(), vy.end());
vx.erase(unique(vx.begin(), vx.end()), vx.end());
vy.erase(unique(vy.begin(), vy.end()), vy.end());
for (int i = 1; i <= n; i++) {
node[i].p = getidx(node[i].x);
node[i].q = getidy(node[i].y);
}
for (int i = 1; i <= vy.size(); i++) mp[i].clear();
for (int i = 1; i <= n; i++) mp[node[i].q].push_back(node[i]);
ll ans = 0;
for (int i = 1; i <= vy.size(); i++) {
build(1, vx.size(), 1);
for (int j = i; j <= vy.size(); j++) {
for (int k = 0; k < mp[j].size(); k++) {
Node tmp = mp[j][k];
update(tmp.p, tmp.w, 1, vx.size(), 1);
}
ans = max(ans, tree[1].ans);
}
}
printf("%lld\n", ans);
}
return 0;
}
hdu-6638 Snowy Smile的更多相关文章
- HDU 6638 - Snowy Smile 线段树区间合并+暴力枚举
HDU 6638 - Snowy Smile 题意 给你\(n\)个点的坐标\((x,\ y)\)和对应的权值\(w\),让你找到一个矩形,使这个矩阵里面点的权值总和最大. 思路 先离散化纵坐标\(y ...
- 最大矩阵覆盖权值--(静态连续最大子段 (线段树) )-HDU(6638)Snowy Smile
这题是杭电多校2019第六场的题目 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意:给你平面上n个点,每个点都有权值(有负权),让你计算一 ...
- 2019杭电多校第六场hdu6638 Snowy Smile(线段树+枚举)
Snowy Smile 题目传送门 解题思路 先把y离散化,然后把点按照x的大小进行排序,我们枚举每一种x作为上边界,然后再枚举其对应的每一种下边界.按照这种顺序插入点,这是一个压维的操作,即在线段树 ...
- 2019杭电暑假多校训练 第六场 Snowy Smile HDU - 6638
很多题解都是简单带过,所以打算自己写一篇,顺便也加深自己理解 前置知识:线段树.线段树维护最大字段和.二维坐标离散化 题解: 1.很容易想到我们需要枚举所有子矩阵来得到一个最大子矩阵,所以我们的任务是 ...
- 2019杭电多校6 hdu6638 Snowy Smile(二维最大矩阵和 线段树)
http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意:给你一些点的权值,让找一个矩形圈住一部分点,问圈住点的最大权值和 分析:由于是稀疏图,明显要先把x, ...
- [2019杭电多校第六场][hdu6638]Snowy Smile(维护区间最大子段和)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意为在一个平面上任意选择一个长方形,使得长方形内点权和最大. 因为长方形可以任意选择,所以上下 ...
- 2019 Multi-University Training Contest 7 - 1006 - Snowy Smile - 线段树
http://acm.hdu.edu.cn/showproblem.php?pid=6638 偷学一波潘哥的二维离散化和线段树维护最大子段和. 思路是枚举上下边界,但是不需要从左到右用最大子段和dp. ...
- 【HDOJ6638】Snowy Smile(线段树)
题意:一个二维平面上有n个点,每个点的坐标是(x[i],y[i]),权值是w[i] 求一个矩形使得其中所有点的权值和最大,输出权值和 n<=2e3,x[i],y[i],w[i]的绝对值<= ...
- 2019 Multi-University Training Contest 6 Snowy Smile (最大字段和变形)
题意: 求一个子矩阵要求其矩阵内的合最大. 题解: 正常的求最大子矩阵的复杂度是O(n^3) 对于这一题说复杂度过不去,注意到这个题总共只有2000个点关键点在与这里优化 最大子矩阵可以压缩矩阵变成最 ...
随机推荐
- Android native进程间通信实例-binder结合共享内存
在android源码的驱动目录下,一般会有共享内存的相关实现源码,目录是:kernel\drivers\staging\android\ashmem.c.但是本篇文章不是讲解android共享内存的功 ...
- 运行sh文件
记下在Ubuntu下安装*.sh和*.bin的简单方法. *.sh文件安装方法: 运行终端到文件目录下 1.在终端输入:sudo sh *.sh直接运行 2.在终端输入:sudo chmod +x * ...
- 荔枝FM前端面试题
最近接到了荔枝FM的面试通知,遗憾的是没有拿到offer,但是这次面试呢,还是收获很大的,下面就来给大家说说我遇到的面试题 一面 一面是直接发了一套面试题到邮箱,开启了防作弊的,限时20分钟做完,下面 ...
- java常见面试题目(一)
在大四实习阶段,秋招的时候,面试了很多家公司,总结常见的java面试题目:(答案可以自己百度) 1.你所用oracle的版本号是多少? 2.tomcat修改8080端口号的配置文件是哪个? 3.myb ...
- .NETCoreCSharp 中级篇2-3 Linq简介
.NETCoreCSharp 中级篇2-3 本节内容为Linq及其拓展方法.Linq中表达式树的使用 简介 语言集成查询(LINQ)是一系列直接将查询功能集成到C#语言的技术统称.数据查询历来都表示为 ...
- 客户端埋点实时OLAP指标计算方案
背景 产品经理想要实时查询一些指标数据,在新版本的APP上线之后,我们APP的一些质量指标,比如课堂连接掉线率,课堂内崩溃率,APP崩溃率等指标,以此来看APP升级之后上课的体验是否有所提升,上课质量 ...
- L1005矩阵取数游戏
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define rep(i, a, b) for ( ...
- 【算法】【查找】二分法 Bisection
#include<stdio.h> int main(){ ,,,,,,,,,,,,,,}; ; //长度 ; //要查找到的值 int Bisection(int x,int* a,in ...
- JQGrid之文件上传
文件/图片上传功能,简单总结如下 1.引入ajaxfileupload.js 注意:该文件需要在引入Jquery之后引入 下载链接:https://i.cnblogs.com/Files.aspx 2 ...
- centos7单机安装kafka,进行生产者消费者测试
[转载请注明]: 原文出处:https://www.cnblogs.com/jstarseven/p/11364852.html 作者:jstarseven 码字挺辛苦的..... 一.k ...