洛谷P2216

)逼着自己写DP

题意:

  给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小。

思路:

  先处理出每一行每个格子到前面n个格子中的最大值和最小值。然后对每一列求出长度为n的前面算出来的最大值的最大值,前面算出来的最小值的最小值。如果直接做是n的三次方,但是用单调队列优化后就是n方的。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e8+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
const int maxn = ;
int mp[maxn][maxn];
int mx[maxn][maxn],mn[maxn][maxn];
deque<int>qmx,qmn;
int main(){
int n,m,k;
scanf("%d%d%d", &n, &m, &k);
for(int i=; i<=n; i++){
for(int j=; j<=m; j++){
scanf("%d", &mp[i][j]);
}
} for(int i=; i<=n; i++){
qmx.clear();
qmn.clear();
for(int j=; j<=m; j++){
while(!qmx.empty() && mp[i][qmx.back()] <= mp[i][j]) qmx.pop_back();
qmx.push_back(j);
while(!qmx.empty() && j - qmx.front() + > k) qmx.pop_front();
mx[i][j] = mp[i][qmx.front()]; while(!qmn.empty() && mp[i][qmn.back()] >= mp[i][j]) qmn.pop_back();
qmn.push_back(j);
while(!qmn.empty() && j - qmn.front() + > k) qmn.pop_front();
mn[i][j] = mp[i][qmn.front()];
}
}
int ans = inf;
for(int j=; j<=m; j++){
qmx.clear();
qmn.clear();
for(int i=; i<=n; i++){
while(!qmx.empty() && mx[qmx.back()][j] <= mx[i][j]) qmx.pop_back();
qmx.push_back(i);
while(!qmx.empty() && i - qmx.front() + > k) qmx.pop_front();
int tpmx = mx[qmx.front()][j]; while(!qmn.empty() && mn[qmn.back()][j] >= mn[i][j]) qmn.pop_back();
qmn.push_back(i);
while(!qmn.empty() && i - qmn.front() + > k) qmn.pop_front();
int tpmn = mn[qmn.front()][j]; if(i>=k&&j>=k) ans = min(ans, tpmx - tpmn);
}
}
printf("%d\n", ans); return ;
}

洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP的更多相关文章

  1. 洛谷 P2216 [HAOI2007]理想的正方形

    P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...

  2. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  3. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  4. 洛谷P2216 HAOI2007 理想的正方形 (单调队列)

    题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...

  5. 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解

        算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...

  6. 洛谷P2569 (BZOJ1855)[SCOI2010]股票交易 【单调队列优化DP】

    Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...

  7. [洛谷P2216][HAOI2007]理想的正方形

    题目大意:有一个$a\times b$的矩阵,求一个$n\times n$的矩阵,使该区域中的极差最小. 题解:二维$ST$表,每一个点试一下是不是左上角就行了 卡点:1.用了一份考试时候写的二维$S ...

  8. 洛谷 P2216 [HAOI2007]理想正方形

    洛谷 巨说这是一道单调队列好题,但是我并不是用单调队列做的诶. 如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了. \(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\ ...

  9. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

随机推荐

  1. HashMap、Hash Table、ConcurrentHashMap

    这个这个...本王最近由于开始找实习工作了,所以就在牛客网上刷一些公司的面试题,大多都是一些java,前端HTML,js,jquery,以及一些好久没有碰的算法题,说实话,有点难受,其实在我不知道的很 ...

  2. 微服务SpringCloud之Spring Cloud Config配置中心Git

    微服务以单个接口为颗粒度,一个接口可能就是一个项目,如果每个项目都包含一个配置文件,一个系统可能有几十或上百个小项目组成,那配置文件也会有好多,对后续修改维护也是比较麻烦,就和前面的服务注册一样,服务 ...

  3. 邻域保持嵌入(NPE)

    传统的线性降维方法,如主成分分析(PCA).因子分析(FA)等,关注的是样本的方差,能学习线性流形的结构,却无法学习非线性流形.而经典的流形学习方法虽然能够学习非线性流形结构,但由于本身属于直推学习, ...

  4. Elasticsearch索引增量统计及定时邮件实现

    0.需求 随着ELKStack在应用系统中的数据规模的急剧增长,每天千万级别数据量(存储大小:10000000*10k/1024/1024=95.37GB,假设单条数据10kB,实际远大于10KB)的 ...

  5. Java虚拟机(二)-对象创建

    这一篇大致说明一下,对象在Java堆中对象分配.内存布局以及访问定位 1.对象的创建 虚拟机在遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引 ...

  6. Django2.2中间件详解

    中间件是 Django 用来处理请求和响应的钩子框架.它是一个轻量级的.底层级的"插件"系统,用于全局性地控制Django 的输入或输出,可以理解为内置的app或者小框架. 在dj ...

  7. Javascript中,实现十大排序方法之一(冒泡排序及其优化设想)

    冒泡排序的Javascript实现 首先定义一个取值范围在(0~100000)之间的随机值的长度为10万的数组, function bubbleSort(arr) { console.time('冒泡 ...

  8. QMS 的趨勢概述

    自泰勒Taylor提出的科学管理被奉行后,制造业的分工已然成形,而产品不再是由工匠单独负责完成.为确保产品的质量,产品在完工后的检验为确保瑕疵品不外流出给客户的必要关卡.然而当产品依靠检验结果并无法减 ...

  9. U盘制作启动盘后空间容量变小解决方法

    WinAll的快速恢复方式: 0.windows键+R(调出运行窗口)输入:diskpart回车(调出磁盘管理器) 1.输入:list disk回车(从大小容量确定目标U盘的盘符X) 2.输入:sel ...

  10. 驰骋工作流引擎-ccflow单据模式介绍与使用

    Ccflow单据模式 关键字: 驰骋工作流程快速开发平台 工作流程管理系统 工作流引擎 asp.net工作流引擎 java工作流引擎.  表单引擎  表单单据模式增删改查   应用场景: 一些客户在使 ...