JOBDU 1140 八皇后
题目1140:八皇后
时间限制:1 秒
内存限制:32 兆
特殊判题:否
提交:1064
解决:665
- 题目描述:
-
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
- 输入:
-
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
- 输出:
-
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
- 样例输入:
-
2
1
92
- 样例输出:
-
15863724
84136275
- 来源:
- 2008年北京大学软件所计算机研究生机试真题
-
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <string.h>
using namespace std;
int ap[][] = {};
int num;
int tmp[] = {};
int ok(int x,int y)
{
int j;
for(int i=;i<x;i++)//小于x!!!只看前面的行数就可以了
{
j = tmp[i];
if(i==x)
return ;
if(j==y)
return ;
if((j-i)==(y-x))
return ;
if((j+i)==(y+x))
return ;
}
return ;
}
void dfs(int n)
{
for(int i=; i<; i++)
{
if(ok(n,i))
{
tmp[n] = i;//注意用一个数组存下每一行的位置,这样存好一点,才能在回溯的时候不改变
if(n==)
{
for(int i=; i<; i++)
ap[num][i]=tmp[i]+;
num++;
return;
}
dfs(n+);
tmp[n] = ;
}
}
}
int main()
{
num=;
dfs();
int n,m;
scanf("%d",&n);
while(n--)
{
scanf("%d",&m);
for(int i=; i<; i++)
printf("%d",ap[m-][i]);
printf("\n");
}
return ;
}
JOBDU 1140 八皇后的更多相关文章
- 九度OJ 1140:八皇后 (八皇后问题)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:795 解决:494 题目描述: 会下国际象棋的人都很清楚:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8 * ...
- 九度oj 题目1140:八皇后
题目描述: 会下国际象棋的人都很清楚:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题. 对于某个满足要求的 ...
- 八皇后算法的另一种实现(c#版本)
八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...
- 数据结构0103汉诺塔&八皇后
主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...
- Python学习二(生成器和八皇后算法)
看书看到迭代器和生成器了,一般的使用是没什么问题的,不过很多时候并不能用的很习惯 书中例举了经典的八皇后问题,作为一个程序员怎么能够放过做题的机会呢,于是乎先自己来一遍,于是有了下面这个ugly的代码 ...
- Python解决八皇后问题
最近看Python看得都不用tab键了,哈哈.今天看了一个经典问题--八皇后问题,说实话,以前学C.C++的时候有这个问题,但是当时不爱学,没搞会,后来算法课上又碰到,只是学会了思想,应该是学回溯法的 ...
- OpenJudge1700:八皇后问题 //不属于基本法的基本玩意
1700:八皇后问题//搜索 总时间限制: 10000ms 内存限制: 65536kB 描述 在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方. 输入 无输入. 输出 按给定顺序和 ...
- C#八皇后问题 枚举值
记得刚出道的时候, 有考虑怎么面试, 以及可能会遇到的面试题, 有一个人说了一下 八皇后问题, 据说要用 sql 语句写出来, 暂时我 写了一个C#版本的, 经测验,八皇后算法结果为 92种, 这个与 ...
- 八皇后(dfs+回溯)
重看了一下刘汝佳的白板书,上次写八皇后时并不是很懂,再写一次: 方法1:逐行放置皇后,然后递归: 代码: #include <bits/stdc++.h> #define MAXN 8 # ...
随机推荐
- 挂起(suspend)与线程阻塞工具类LockSupport
挂起(suspend)与线程阻塞工具类LockSupport 一般来说是不推荐使用suspend去挂起线程的,因为suspend在导致线程暂停的同时,并不会去释放任何锁资源. 如果其他任何线程想要访问 ...
- 快速字符串匹配一: 看毛片算法(KMP)
前言 由于需要做一个快速匹配敏感关键词的服务,为了提供一个高效,准确,低能耗的关键词匹配服务,我进行了漫长的探索.这里把过程记录成系列博客,供大家参考. 在一开始,接收到快速敏感词匹配时,我就想到了 ...
- JAVA面向对象面试题带答案(墙裂推荐)
1) 在Java中,如果父类中的某些方法不包含任何逻辑,并且需要有子类重写,应该使用(c)关键字来申明父类的这些方法. a) Finalc b) Static c) Abstract d) Void2 ...
- FTP工具-FileZilla安装使用教程
1.首先,百度搜索“FileZilla”,进入官网,下载地址:https://www.filezilla.cn/download/client ,根据自己电脑配置去下载 2.下载本地,双击运行安装程 ...
- 牛客多校训练第八场C.CDMA(思维+构造)
题目传送门 题意: 输入整数m( m∈2k ∣ k=1,2,⋯,10),构造一个由1和-1组成的m×m矩阵,要求对于任意两个不同的行的内积为0. 题解: Code: #include<bits/ ...
- 从MySQL迁移到MariaDB(CentOS)
MySQL是世界上最流行的开源关系数据库.原来 MariaDB 的设计初衷之一就是完全兼容 MySQL,包括 API 和客户端协议,使之能轻松成为 MySQL 的代替品.MariaDB 与 MySQL ...
- cs231n---生成模型
1 生成模型的定义和分类 生成模型是一种无监督学习方法.其定义是给一堆由真实分布产生的训练数据,我们的模型从中学习,然后以近似于真实的分布来产生新样本. 生成模型分为显式和隐式的生成模型: 为什么生成 ...
- Docker 方式部署 Solo 博客系统总结
此篇为Docker部署方式,另有Tomcat部署方式,请参考文章<Tomcat 方式部署 Solo 博客系统总结> 最近搭建了一个博客系统,作为自己的主页,方便记录一些平时所见所闻 ...
- pycharm的补充
pycharm 快捷键 tab自动补全 首行缩进 ctrl+?是全行加#进行注释 ctrl+d 复制上一行 ctrl +z 撤销 ctrl+shift+z 撤销的撤销 更改字体大小
- ansible之变量
一.常用系统变量 1. loop #表示循环,去读循环体里的变量固定使用{{item}},item是个字典对象item.key=value,例如如下playbook内容: --- - name: ...