Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 37418    Accepted Submission(s): 13363
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.

C/C++:

 #include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std; const int MAX = 1e6 + ; int m, n, pre[MAX], dp[MAX], num[MAX], ans, j; int main()
{
while (~scanf("%d%d", &m, &n))
{
memset(dp, , sizeof(dp));
memset(pre, , sizeof(pre)); for (int i = ; i <= n; ++ i) scanf("%d", &num[i]);
for (int i = ; i <= m; ++ i)
{
ans = -INF;
for (j = i; j <= n; ++ j)
{
dp[j] = max(dp[j - ], pre[j - ]) + num[j];
pre[j - ] = ans;
ans = max(dp[j], ans);
}
// pre[j - 1] = ans;
} printf("%d\n", ans);
}
return ;
}

hdu 1024 Max Sum Plus Plus (动态规划)的更多相关文章

  1. HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]

    Max Sum Plus Plus Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  2. HDU 1024 Max Sum Plus Plus (动态规划 最大M字段和)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  3. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  4. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  5. HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...

  6. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. HDU 1024 Max Sum Plus Plus (动态规划、最大m子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. HDU 1024 max sum plus

    A - Max Sum Plus Plus Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  9. HDOJ 1024 Max Sum Plus Plus -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Problem Description Now I think you have got an ...

随机推荐

  1. SQL Server Try Catch 异常捕捉

    SQL Server Try Catch 异常捕捉 背景 今天遇到一个关于try catch 使用比较有意思的问题.如下一段代码: SELECT @@TRANCOUNT AS A BEGIN TRY ...

  2. [JZOJ4737] 【NOIP2016提高A组模拟8.25】金色丝线将瞬间一分为二

    Description Input Output Sample Input 5 101 12 23 34 45 5 Sample Output 4 Data Constraint Hint 开long ...

  3. [CF85E] Guard Towers - 二分+二分图

    题目描述 In a far away kingdom lives a very greedy king. To defend his land, he built n n n guard towers ...

  4. 下载linux历史版本

    http://blog.csdn.net/u012453843/article/details/52819756

  5. 《Java并发编程实战》读书笔记-第5章 基础构建模块

    同步容器类 同步容器类实现线程安全的方式:将所有状态封装起来,对每个公有方法使用同步,使得每一次只有一个线程可以访问.同步容器类包含:Vector.Hashtable.Collections.sync ...

  6. LeetCode初级算法--排序和搜索01:第一个错误的版本

    LeetCode初级算法--排序和搜索01:第一个错误的版本 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.cs ...

  7. RIDE-工程、测试套件、测试用例三者关系

    理论 type的选择: 一般来说:测试项目(directory)-测试套件(file)-测试用例 本质上,“测试项目”和“测试套件”并没有什么区别,但是testcase只能放在file类型的test ...

  8. 详解 Redis 内存管理机制和实现

    Redis是一个基于内存的键值数据库,其内存管理是非常重要的.本文内存管理的内容包括:过期键的懒性删除和过期删除以及内存溢出控制策略. 最大内存限制 Redis使用 maxmemory 参数限制最大可 ...

  9. Linux常用命令-不定时记录

    文件移动命令 命令格式:mv [-fiv] source destination 参数说明:-f:force,强制直接移动而不询问-i:若目标文件(destination)已经存在,就会询问是否覆盖- ...

  10. deepin15.5 安装tensorflow-gpu

    deepin的CUDA和cuDNN安装方法与其它系统有所不同,参考其它操作系统的方法也许不适用,特别是显卡驱动的安装,容易使系统出现问题 本次配置: 操作系统:deepin15.5桌面版 电脑品牌:联 ...