zerojudge  汉诺塔?图片问度娘
b161: NOIP2007
4.Hanoi双塔问题

题目:

给定A、B、C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形)。现要将这些圆盘移到C柱上,在移动过程中可放在B柱上暂存。要求:

(1)每次只能移动一个圆盘;

(2)A、B、C三根细柱上的圆盘都要保持上小下大的顺序;

任务:设An为2n个圆盘完成上述任务所需的最少移动次数,对于输入的n,输出An

输入1  2

输出2  6

While not eof

首先
咱们先得搞懂汉诺塔。

汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

感谢百度百科!

我们先看1个黄金圆盘的情况:

设上面的盘为x。

  1. 1.    将x移动到C

我们先看2个黄金圆盘的情况:

设上面的盘为x,下面的为y。

1.将x移动到B

2.将y移动到C

3.将x移动到C

共3步。

一般地,设n个圆盘的汉诺塔问题,一共需要移动H(n)步。则H(2)=H(1)+1+H(1)=2*H(1)+1

所以 H(n)=H(n-1)*2+1

再来看汉诺双塔:(更据之前的规律自己先推测一下)

再来看代码:

 #include <iostream>

 using namespace std;

 int main(){

          int a[]={};

          int n;

          while(cin>>n){

                    for(int i=;i<;i++)a[i]=;//初始化

                    a[]=;

                    for(int i=;i<=n;i++){

                             for(int j=;j<;j++){//乘2

                                      a[j]*=;

                             }

                             for(int j=;j<;j++){//进位

                                      a[j+]=(a[j]/)+a[j+];

                                      a[j]=a[j]%;

                             }

                   }

                    a[]=a[]-;

                    int l=;

                    while(a[l]==) l--;

                    for(int i=l;i>=;i--){

                               cout<<a[i];

                    }

                    cout<<endl;

          }

          return ;

 }

b161: NOIP2007 4.Hanoi双塔问题的更多相关文章

  1. 【NOIP2007】Hanoi双塔问题

    题目描述 给定A.B.C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形). 现要将这些圆盘移到C柱上 ...

  2. noip普及组2007 Hanoi双塔问题

    Hanoi双塔问题 描述 给定A,B,C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的.现要将这些圆盘移到C柱上,在移动 ...

  3. Hanoi双塔问题(递推)

    Hanoi双塔问题 时间限制: 1 Sec  内存限制: 128 MB提交: 10  解决: 4[提交][状态][讨论版][命题人:外部导入] 题目描述 给定A,B,C三根足够长的细柱,在A柱上放有2 ...

  4. 洛谷 P1096 Hanoi双塔问题

    P1096 Hanoi双塔问题 题目描述 给定A.B.C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情 ...

  5. [高精度]P1096 Hanoi 双塔问题

    Hanoi 双塔问题 题目描述 给定A.B.C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形). 现 ...

  6. 【9107】Hanoi双塔问题(NOIP2007)

    Time Limit: 10 second Memory Limit: 2 MB 问题描述 给定A,B,C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的 ...

  7. hanoi双塔

    汉诺塔,经典的递归. 经典的汉诺塔游戏相信很多同学都会玩的,规则就不用赘述,百科一下就OK.有三个柱子A,B,C,A柱子上套有n个大小不等的盘子,任意两个盘子,上面的盘子一定小于下面的盘子.现在请你编 ...

  8. 洛谷——P1096 Hanoi双塔问题

    https://www.luogu.org/problem/show?pid=1096 题目描述 给定A.B.C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个 ...

  9. LFYZ-OJ ID: 1011 hanoi双塔问题

    思路 虽然每种大小盘子数量为2,但对总步数的影响只是一个简单的倍数关系而已,递推关系很容易可以总结出来:an=an-1+2+an-1=2(an-1+1),n=1时,a1=2.故递推的过程就是从a1=2 ...

随机推荐

  1. Salesforce LWC学习(四) 父子component交互 / component声明周期管理 / 事件处理

    我们在上篇介绍了 @track / @api的区别.在父子 component中,针对api类型的变量,如果声明以后就只允许在parent修改,son component修改便会导致报错. sonIt ...

  2. jenkins无法连接到git原因

    1.账号密码错误 2.公钥私钥不对应(git上为公钥,jenkins为私钥,私钥比公钥长) 3.公钥私钥文件没有复制到jenkins目录下的.ssh文件中

  3. ElasticSearch实战系列一: ElasticSearch集群+Kinaba安装教程

    前言 本文主要介绍的是ElasticSearch集群和kinaba的安装教程. ElasticSearch介绍 ElasticSearch是一个基于Lucene的搜索服务器,其实就是对Lucene进行 ...

  4. IntelliJ IDEA 从入门到上瘾教程,2019图文版!

    前言:IntelliJ IDEA 如果说IntelliJ IDEA是一款现代化智能开发工具的话,Eclipse则称得上是石器时代的东西了. 其实笔者也是一枚从Eclipse转IDEA的探索者,随着近期 ...

  5. 实验Oracle数据文件被误删除的场景恢复

    环境:RHEL 5.4 + Oracle 11.2.0.3 背景:数据库没有备份,数据库文件被误操作rm,此时数据库尚未关闭,也就是对应句柄存在,如何快速恢复? 1.某个普通数据文件被删除 2.所有数 ...

  6. 地图POI类别标签体系建设实践

    导读 POI是“Point of interest”的缩写,中文可以翻译为“兴趣点”.在地图上,一个POI可以是一栋房子.一个商铺.一个公交站.一个湖泊.一条道路等.在地图搜索场景,POI是检索对象, ...

  7. python 07 数据类型

    目录 1. 基础数据类型填充 1.str:(不可变) 2. list: 3. tuple: 4. dict: 5. set: 6. bool: 7. 数据类型之间转换 2.删除列表/字典的代码坑: 3 ...

  8. C#开发BIMFACE系列4 服务端API之源上传文件

    在注册成为BIMFACE的应用开发者后,要能在浏览器里浏览你的模型或者获取你模型内的BIM数据, 首先需要把你的模型文件上传到BIMFACE.根据不同场景,BIMFACE提供了丰富的文件相关的接口. ...

  9. Codeforces 936C

    题意略. 思路: 这个题目没做出来是因为缺少一个整体的构造思路. 正确的构造思路是不断地在s中去构造并且扩大t的后缀,构造好的后缀总是放在前面,然后不断地把它往后挤,最后将s构造成t. 比如: 现在在 ...

  10. React-native 关于 android真机 出现连不上服务器

    我们都知道使用RN开发移动端应用时,我们要在手机端运行程序,可以下载 expo 这个软件进行扫描二维码连接到开发的APP上 有时会有突然连不上之前连上过的应用,出现如下画面 首先保证你的电脑和你的手机 ...