【NOI 2011】阿狸的打字机
Problem
Description
阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。打字机上只有 \(28\) 个按键,分别印有 \(26\) 个小写英文字母和 B 、 P 两个字母。 经阿狸研究发现,这个打字机是这样工作的:
- 输入小写字母,打字机的一个凹槽中会加入这个字母(按
P前凹槽中至少有一个字母)。 - 按一下印有
B的按键,打字机凹槽中最后一个字母会消失。 - 按一下印有
P的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失(保证凹槽中至少有一个字母)。
例如,阿狸输入 aPaPBbP ,纸上被打印的字符如下:
a
aa
ab
我们把纸上打印出来的字符串从 \(1\) 开始顺序编号,一直到 \(n\) 。打字机有一个非常有趣的功能,在打字机中暗藏一个带数字的小键盘,在小键盘上输入两个数 \((x,y)\) (其中 \(1 \le x,y \le n\) ),打字机会显示第 \(x\) 个打印的字符串在第 \(y\) 个打印的字符串中出现了多少次。
阿狸发现了这个功能以后很兴奋,他想写个程序完成同样的功能,你能帮助他么?
Input Format
输入的第一行包含一个字符串,按阿狸的输入顺序给出所有阿狸输入的字符。
第二行包含一个整数 \(m\) ,表示询问个数。 接下来 \(m\) 行描述所有由小键盘输入的询问。其中第i行包含两个整数 \(x, y\) ,表示第i个询问为 \((x, y)\) 。
Output Format
输出 \(m\) 行,其中第 \(i\) 行包含一个整数,表示第 \(i\) 个询问的答案。
Sample
Input
aPaPBbP
3
1 2
1 3
2 3
Output
2
1
0
Range
所有测试数据的范围和特点如下表所示:
| 测试点编号 | \(n\) 的规模 | \(m\) 的规模 | 字符串长度 | 输入总长 (输入文件第一行的字符数) |
|---|---|---|---|---|
| 1 | \(1\le n \le 100\) | \(1\le m \le 1000\) | - | \(\le 100\) |
| 2 | \(1\le n \le 100\) | \(1\le m \le 1000\) | - | \(\le 100\) |
| 3 | \(1\le n \le 1000\) | \(1\le m \le 10^4\) | 单个长度 \(\le 1000\) ,总长度 \(\le 10^5\) | \(\le 10^5\) |
| 4 | \(1\le n \le 1000\) | \(1\le m \le 10^4\) | 单个长度 \(\le 1000\) ,总长度 \(\le 10^5\) | \(\le 10^5\) |
| 5 | \(1\le n \le 10^4\) | \(1\le m \le 10^5\) | 总长度 \(\le 10^5\) | \(\le 10^5\) |
| 6 | \(1\le n \le 10^4\) | \(1\le m \le 10^5\) | 总长度 \(\le 10^5\) | \(\le 10^5\) |
| 7 | \(1\le n \le 10^4\) | \(1\le m \le 10^5\) | 总长度 \(\le 10^5\) | \(\le 10^5\) |
| 8 | \(1\le n \le 10^5\) | \(1\le m \le 10^5\) | - | \(\le 10^5\) |
| 9 | \(1\le n \le 10^5\) | \(1\le m \le 10^5\) | - | \(\le 10^5\) |
| 10 | \(1\le n \le 10^5\) | \(1\le m \le 10^5\) | - | \(\le 10^5\) |
Algorithm
\(Trie\) 图,树状数组
Mentality
欲得正解,先想暴力。
思考一下暴力怎么做:建 \(Trie\) -> 建 \(fail\) -> 对于每对询问 \(x,y\),由于 \(y\) 已经插入了 \(Trie\) 里,直接从 \(y\) 对应的终止结点往根走,并在每个点跳 \(fail\) 来计算答案。
当然,为了后面的分数,建 \(Trie\) 的时侯我们还是不能这么裸的,应该利用不同字符串间的高度重复性。由于打字机必需从末尾一个个删除字母,我们可以维护一个指针 \(pos\) 指向上个字符串的结尾,每当运行一次删除操作且此次操作会导致当前字符串与上一字符串的前缀重合长度 \(-1\) ,就令 \(pos\) 跳至父亲结点处。当执行打印命令时,则从 \(pos\) 处开始建 \(Trie\) 即可。
不难知道,这样我们的得分是 \(40\) 。
接下来,我们发现,\(fail\) 指针是构成了一棵树的,那么我们本来对于询问的暴力跳跃就可以得到转化:在 \(x\) 的 \(fail\) 边子树内,有多少个结点属于 \(y\) ?
那接下来就很明显了:
先预处理出 \(fail\) 树上的 \(dfn\) 序,然后离线询问,将询问挂载在 \(y\) 的终止结点上。
然后对 \(Trie\) 做 \(dfs\) ,每当进入一个结点就在对应的 \(fail\) 树上的 \(dfn\) 序位置 \(+1\) ,当退出一个结点就 \(-1\) 。这样一来,每当到达一个结点,就有且仅有根结点到当前结点路径上的点对应位置 \(+1\) ,满足了询问的统计条件。
每到一个询问点 \(x\) ,查询 \([dfn[x],dfn[x]+size[x]-1]\) 区间内的 \(1\) 的个数即为答案。
Code
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
void read(int &x) {
x = 0;
char ch = getchar();
while (!isdigit(ch)) ch = getchar();
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
}
const int Max_n = 1e5 + 1, Max_m = 1e5 + 1, Max_len = 1e5 + 1, M = 26;
int n, m, Ans[Max_n];
int top, pos, cnt_T, End[Max_n];
char S[Max_len], now_S[Max_len];
vector<int> que_d[Max_len], que_x[Max_len];
queue<int> q;
void Trie_add(int x);
struct Trie {
int sur, ch[M], fa, deep, End;
int nx(int x, int now) {
if (!ch[x]) {
ch[x] = ++cnt_T;
Trie_add(now);
}
return ch[x];
}
} k[Max_len], tp[Max_len];
void Trie_add(int x) { k[cnt_T].fa = x, k[cnt_T].deep = k[x].deep + 1; }
void Trie_build() {
for (int i = 0; i < M; i++)
if (k[0].ch[i]) q.push(k[0].ch[i]);
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = 0; i < M; i++)
if (k[x].ch[i])
k[k[x].ch[i]].sur = k[k[x].sur].ch[i], q.push(k[x].ch[i]);
else
k[x].ch[i] = k[k[x].sur].ch[i];
}
}
int cntr, head[Max_len], nx[Max_len], to[Max_len];
int cntd, d[Max_len], size[Max_len];
int cnts, s[Max_len << 1];
int c[Max_len];
bool vis[Max_len];
void get_s(int x) {
s[++cnts] = x;
for (int i = 0; i < M; i++)
if (k[x].ch[i]) get_s(k[x].ch[i]);
s[++cnts] = x;
}
void addr(int u, int v) {
cntr++;
to[cntr] = v, nx[cntr] = head[u];
head[u] = cntr;
}
void Tree_build(int x) {
size[x] = 1, d[x] = ++cntd;
for (int i = head[x]; i; i = nx[i]) Tree_build(to[i]), size[x] += size[to[i]];
}
void c_add(int k, int x) {
if (!k) return;
for (int i = k; i <= cnt_T + 1; i += i & -i) c[i] += x;
}
int c_query(int k) {
int ans = 0;
for (int i = k; i; i -= i & -i) ans += c[i];
return ans;
}
void Ans_Count(int x) {
for (int i = 1; i <= cnts; i++) {
int x = s[i];
if (!vis[x]) { // 第一次访问代表进入结点
vis[x] = 1, c_add(d[x], 1);
for (int j = que_d[x].size() - 1; ~j; j--) {
int now = que_x[x][j];
Ans[que_d[x][j]] =
c_query(d[now] + size[now] - 1) - c_query(d[now] - 1);
}
} else // 第二次访问代表退出结点
c_add(d[x], -1);
}
}
int main() {
scanf("%s", S);
for (int i = 0, lim = strlen(S); i < lim; i++) {
if (S[i] == 'B')
top--, pos = k[pos].fa; // pos 的处理
else if (S[i] == 'P') {
for (int p = k[pos].deep + 1; p <= top; p++) // pos 的使用
pos = k[pos].nx(now_S[p] - 'a', pos);
k[pos].End = ++n;
End[n] = pos;
} else
now_S[++top] = S[i];
}
get_s(0); // 先处理出 Trie 树上点的访问顺序
Trie_build(); // fail 指针构建
read(m);
int x, y;
for (int i = 1; i <= m; i++) {
read(x), read(y);
que_d[End[y]].push_back(i);
que_x[End[y]].push_back(End[x]); // 挂载询问
}
for (int i = 1; i <= cnt_T; i++) addr(k[i].sur, i); // 连接 fail 边
Tree_build(0); // 构建 fail 树
Ans_Count(0); // 统计答案
for (int i = 1; i <= m; i++) printf("%d\n", Ans[i]);
}
【NOI 2011】阿狸的打字机的更多相关文章
- [NOI 2011]阿狸的打字机
Description 题库链接 给你 \(n\) 个单词, \(m\) 组询问,每组询问形同 \((x,y)\) ,询问 \(x\) 串在 \(y\) 串中出现多少次. \(1\leq n,m\le ...
- NOI 2011 阿狸的打字机(AC自动机+主席树)
题意 https://loj.ac/problem/2444 思路 多串匹配,考虑 \(\text{AC}\) 自动机.模拟打字的过程,先建出一棵 \(\text{Trie}\) 树,把它变成自动机 ...
- NOI 2011 阿狸的打字机 (AC自动机+dfs序+树状数组)
题目大意:略(太长了不好描述) 良心LOJ传送门 先对所有被打印的字符串建一颗Trie树 观察数据范围,并不能每次打印都从头到尾暴力建树,而是每遍历到一个字符就在Trie上插入这个字符,然后记录每次打 ...
- NOI 2011 【阿狸的打字机】
之前讲了[AC自动姬],今天我终于把这题给刚下来了...嗯,来给大家讲一讲. 题目描述: 打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工 ...
- BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2545 Solved: 1419[Submit][Sta ...
- 【BZOJ-2434】阿狸的打字机 AC自动机 + Fail树 + DFS序 + 树状数组
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2022 Solved: 1158[Submit][Sta ...
- BZOJ_2434_[NOI2011]_阿狸的打字机_(AC自动机+dfs序+树状数组)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=2434 给出\(n\)个字符串,\(m\)个询问,对于第\(i\)个询问,求第\(x_i\)个字 ...
- AC自动机:BZOJ 2434 阿狸的打字机
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1834 Solved: 1053[Submit][Sta ...
- BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )
一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...
- [NOI2011]阿狸的打字机(好题!!!!)
2785: [NOI2011]阿狸的打字机 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 7 Solved: 3[Submit][Status][We ...
随机推荐
- 用js写直角三角形,等腰三角形,菱形
//一. 画一个直角三角形 // 第几行 *号数 // * 1 1 // ** 2 2 // *** ...
- 【转载】Opening Robot Framework log failed
问题: 两种方法可以解决: 1.临时解决方案 jenkins系统管理—>运行命令行,在文本里输入 System.setProperty("hudson.model.DirectoryB ...
- JavaFX如何制作鼠标多击事件?
JavaFX制作鼠标双击或者多击事件需要用到getClickCount()方法,这个方法需要添加addEventHandler()方法,addEventHandler()是事件方法. 1 scene. ...
- GeoServer 2.15.0版本跨域问题解决方法
geoserver默认不开启跨域设置,开启步骤如下: 1.修改配置文件web.xml,该配置文件的路径如下 \webapps\geoserver\WEB-INF\web.xml 2.搜索:cross- ...
- 面试连环炮系列(十一):说说你们的分布式ID设计方案
说说你们的分布式ID设计方案 我们采用Snowflake算法,生成一个64bit的数字,64bit被划分成多个段,分别表示时间戳.机器编码.序号. 41位的时间序列(精确到毫秒,41位的长度可以使用6 ...
- IT兄弟连 HTML5教程 CSS3属性特效 边框
通过CSS3,我们能够创建圆角边框,向矩形添加阴影,使用图片来绘制边框.并且不需使用设计软件,比如photoshop. 1 边框图片border-image border-image为边框应用图片, ...
- wpf 模拟抖音很火的罗盘时钟,附源码,下载就能跑
wpf 模拟抖音很火的罗盘时钟,附源码 前端时间突然发现,抖音火了个壁纸,就是黑底蕾丝~~~ 错错错,黑底白字的罗盘时钟! 作为程序员的我,也觉得很新颖,所以想空了研究下,这不,空下来了就用wpf, ...
- WPF之实现控件内容拖动
以下分别记录label.listbox.treeview三个控件的拖动示例: 1.对被拖动控件,实现拖动事件,主要是通过各种鼠标事件,实现DragDrop.DoDragDrop方法. 2.对于需要拖动 ...
- Python中:dict(或对象)与json之间的互相转化
在Python语言中,json数据与dict字典以及对象之间的转化,是必不可少的操作. 在Python中自带json库.通过import json导入. 在json模块有2个方法, loads():将 ...
- http请求报400错误的原因分析
在ajax请求后台数据时有时会报 HTTP 400 错误 - 请求无效 (Bad request);出现这个请求无效报错说明请求没有进入到后台服务里: 原因:1)前端提交数据的字段名称或者是字段类型 ...