0 MapReduce实现Reduce Side Join操作
一.准备两张表以及对应的数据
(1)m_ys_lab_jointest_a(以下简称表A)
建表语句:
create table if not exists m_ys_lab_jointest_a (
id bigint,
name string
)
row format delimited
fields terminated by ''
lines terminated by ''
stored as textfile;
id name |
create table if not exists m_ys_lab_jointest_b (
id bigint,
statyear bigint,
num bigint
)
row format delimited
fields terminated by ''
lines terminated by ''
stored as textfile;
id statyear num |
我们的目的是,以id为key做join操作,得到以下表:m_ys_lab_jointest_ab
| id name statyear num 1 北京 2011 2019 1 北京 2010 1962 2 天津 2011 1355 2 天津 2010 1299 4 山西 2011 3593 4 山西 2010 3574 |
二.计算模型
整个计算过程是:

上代码:
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter; /**
* MapReduce实现Join操作
*/
public class MapRedJoin {
public static final String DELIMITER = "\u0009"; // 字段分隔符 // map过程
public static class MapClass extends MapReduceBase implements Mapper<LongWritable, Text, Text, Text> {
public void configure(JobConf job) {
super.configure(job);
} public void map(LongWritable key, Text value, OutputCollector<Text, Text> output, Reporter reporter) throws IOException, ClassCastException {
// 获取输入文件的全路径和名称
String filePath = ((FileSplit)reporter.getInputSplit()).getPath().toString();
// 获取记录字符串
String line = value.toString();
// 抛弃空记录
if (line == null || line.equals("")){
return;
}
// 处理来自表A的记录
if (filePath.contains("m_ys_lab_jointest_a")) {
String[] values = line.split(DELIMITER); // 按分隔符分割出字段
if (values.length < 2){
return;
}
String id = values[0]; // id
String name = values[1]; // name
output.collect(new Text(id), new Text("a#"+name));
} else if (filePath.contains("m_ys_lab_jointest_b")) {// 处理来自表B的记录
String[] values = line.split(DELIMITER); // 按分隔符分割出字段
if (values.length < 3){
return;
}
String id = values[0]; // id
String statyear = values[1]; // statyear
String num = values[2]; //num
output.collect(new Text(id), new Text("b#"+statyear+DELIMITER+num));
}
}
} // reduce过程
public static class Reduce extends MapReduceBase implements Reducer<Text, Text, Text, Text> {
public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException {
List<String> listA = new ArrayList<String>(); // 存放来自表A的值
List<String> listB = new ArrayList<String>(); // 存放来自表B的值
while (values.hasNext()) {
String value = values.next().toString();
if (value.startsWith("a#")) {
listA.add(value.substring(2));
} else if (value.startsWith("b#")) {
listB.add(value.substring(2));
}
}
int sizeA = listA.size();
int sizeB = listB.size();
// 遍历两个向量
int i, j;
for (i = 0; i < sizeA; i ++) {
for (j = 0; j < sizeB; j ++) {
output.collect(key, new Text(listA.get(i) + DELIMITER +listB.get(j)));
}
}
}
} protected void configJob(JobConf conf) {
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(Text.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
conf.setOutputFormat(ReportOutFormat.class);
}
}
三.技术细节
0 MapReduce实现Reduce Side Join操作的更多相关文章
- MapReduce的Reduce side Join
1. 简单介绍 reduce side join是全部join中用时最长的一种join,可是这样的方法可以适用内连接.left外连接.right外连接.full外连接和反连接等全部的join方式.r ...
- 使用MapReduce实现join操作
在关系型数据库中,要实现join操作是非常方便的,通过sql定义的join原语就可以实现.在hdfs存储的海量数据中,要实现join操作,可以通过HiveQL很方便地实现.不过HiveQL也是转化成 ...
- MapReduce 实现数据join操作
前段时间有一个业务需求,要在外网商品(TOPB2C)信息中加入 联营自营 识别的字段.但存在的一个问题是,商品信息 和 自营联营标示数据是 两份数据:商品信息较大,是存放在hbase中.他们之前唯一的 ...
- Hadoop基础-MapReduce的Join操作
Hadoop基础-MapReduce的Join操作 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.连接操作Map端Join(适合处理小表+大表的情况) no001 no002 ...
- Hadoop学习之路(二十一)MapReduce实现Reduce Join(多个文件联合查询)
MapReduce Join 对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接. 如果数据量比较大,在内存进行连接操会发生OOM.mapredu ...
- 案例-使用MapReduce实现join操作
哈喽-各位小伙伴们中秋快乐,好久没更新新的文章啦,今天分享如何使用mapreduce进行join操作. 在离线计算中,我们常常不只是会对单一一个文件进行操作,进行需要进行两个或多个文件关联出更多数据, ...
- mapreduce join操作
上次和朋友讨论到mapreduce,join应该发生在map端,理由太想当然到sql里面的执行过程了 wheremap端 join在map之前(笛卡尔积),但实际上网上看了,mapreduce的笛卡尔 ...
- Mapreduce中的join操作
一.背景 MapReduce提供了表连接操作其中包括Map端join.Reduce端join还有半连接,现在我们要讨论的是Map端join,Map端join是指数据到达map处理函数之前进行合并的,效 ...
- [MapReduce_add_4] MapReduce 的 join 操作
0. 说明 Map 端 join && Reduce 端 join 1. Map 端 join Map 端 join:大表+小表 => 将小表加入到内存,迭代大表每一行,与之进行 ...
随机推荐
- java.nio.Buffer源码阅读
Java 自从 JDK1.4 起,对各种 I/O 操作使用了 Buffer 和 Channel 技术.这种更接近于操作系统的的底层操作使得 I/O 操作速度得到大幅度提升,下面引用一段<Java ...
- SpringCloud Sleuth入门介绍
案例代码:https://github.com/q279583842q/springcloud-e-book 一.Sleuth介绍 为什么要使用微服务跟踪?它解决了什么问题? 1.微服务的现状? ...
- JavaScript 基础知识 变量与数据类型
一.区分大小写 JS中一切(变量/函数名/操作符)都是严格区分大小写的 二.标识符 变量.函数.属性的名字以及函数的参数 命名规则:1.第一个字符可以是字母.下划线.美元符号$ 2.其他的字符可以是字 ...
- 花5分钟时间来了解一下高性能网关Kong会有意外收获
前言 前几天开源发布了 Kong.Net 项目,收到了大量园友的反馈,开源当天就突破了 100 个star ,可喜可贺,但是从侧面也说明,我们 .NetCore 阵营真的非常需要拥抱开源,应该敞开心扉 ...
- 你必须知道的Docker镜像仓库的搭建
近期工作中发现用到的容器镜像越来越多(不多的时候没考虑过镜像仓库的问题),同一个容器镜像也存在多个版本,那么镜像仓库的搭建需求就涌现出来,本文就目前的几个常用镜像仓库的搭建进行介绍,我们可以根据需要选 ...
- 8.秋招复习简单整理之Spring面试一般问题
1.不同版本的Spring Framework有哪些主要功能? 2.什么是Spring Framework? Spring是一个轻量级的IOC和AOP容器框架,是为Java应用程序提供基础性服务的一套 ...
- 谷歌地球 Google Earth v7.3.2.5495 专业版
谷歌地球(Google Earth,GE)是一款谷歌公司开发的虚拟地球软件,它把卫星照片.航空照相和GIS布置在一个地球的三维模型上.谷歌地球于2005年向全球推出,被<PC 世界杂志>评 ...
- 【tf.keras】在 cifar 上训练 AlexNet,数据集过大导致 OOM
cifar-10 每张图片的大小为 32×32,而 AlexNet 要求图片的输入是 224×224(也有说 227×227 的,这是 224×224 的图片进行大小为 2 的 zero paddin ...
- 记一次linux服务器入侵应急响应
近日接到客户求助,他们收到托管电信机房的信息,通知检测到他们的一台服务器有对外发送攻击流量的行为.希望我们能协助排查问题. 一.确认安全事件 情况紧急,首先要确认安全事件的真实性.经过和服务器运维人员 ...
- 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...