传送门

题意:

给出一颗树,每个结点有取值范围\([1,D]\)。

现在有限制条件:对于一个子树,根节点的取值要大于等于子数内各结点的取值。

问有多少种取值方案。

思路:

  • 手画一下发现,对于一颗大小为\(sz\)的数,最终的答案为一个\(sz+1\)次为最高次幂的多项式。
  • 因为节点数\(n\leq 3000\),所以暴力求出后插值即可。

简略证明:对于一个链,显然,一个长度为\(x\)的链,最终的结果为\(x+1\)次的多项式;考虑两条链的合并:长度为\(x\)的链和长度为\(y\)的链,显然两者相乘最终为\(x+y+2\)次的多项式,因为合并过后会多一个父节点,那么就是有\(x+y+1\)个点。

归纳一下就有上面说的结论了。

代码如下:

/*
* Author: heyuhhh
* Created Time: 2019/11/18 20:20:04
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 3005, MOD = 1e9 + 7; ll qpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
} int n, D; vector <int> g[N];
int res[N];
int pre[N][N]; void dfs(int u, int fa) {
int son = 0;
for(auto v : g[u]) if(v != fa) {
dfs(v, u); ++son;
}
if(!son) {
for(int i = 1; i <= n; i++) pre[u][i] = i;
} else {
for(int i = 1; i <= n; i++) res[i] = 1;
for(auto v : g[u]) if(v != fa) {
for(int i = 1; i <= n; i++) res[i] = 1ll * res[i] * pre[v][i] % MOD;
}
for(int i = 1; i <= n; i++) pre[u][i] = (pre[u][i - 1] + res[i]) % MOD;
}
} struct Lagrange {
static const int SIZE = 3005;
ll f[SIZE], fac[SIZE], inv[SIZE], pre[SIZE], suf[SIZE];
int n;
inline void add(ll &x, int y) {
x += y;
if(x >= MOD) x -= MOD;
}
void init(int _n) {
n = _n;
fac[0] = 1;
for (int i = 1; i < SIZE; ++i) fac[i] = fac[i - 1] * i % MOD;
inv[SIZE - 1] = qpow(fac[SIZE - 1], MOD - 2);
for (int i = SIZE - 1; i >= 1; --i) inv[i - 1] = inv[i] * i % MOD;
f[0] = 0;
}
ll calc(ll x) {
if (x <= n) return f[x];
pre[0] = x % MOD;
for (int i = 1; i <= n; ++i) pre[i] = pre[i - 1] * ((x - i) % MOD) % MOD;
suf[n] = (x - n) % MOD;
for (int i = n - 1; i >= 0; --i) suf[i] = suf[i + 1] * ((x - i) % MOD) % MOD;
ll res = 0;
for (int i = 0; i <= n; ++i) {
ll tmp = f[i] * inv[n - i] % MOD * inv[i] % MOD;
if (i) tmp = tmp * pre[i - 1] % MOD;
if (i < n) tmp = tmp * suf[i + 1] % MOD;
if ((n - i) & 1) tmp = MOD - tmp;
add(res, tmp);
}
return res;
}
}lagrange; void run(){
for(int i = 2; i <= n; i++) {
int x; cin >> x;
g[i].push_back(x);
g[x].push_back(i);
}
lagrange.init(n);
dfs(1, 0);
for(int i = 1; i <= n; i++) lagrange.f[i] = pre[1][i];
int ans = lagrange.calc(D);
cout << ans;
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> n >> D) run();
return 0;
}

【cf995】F. Cowmpany Cowmpensation(拉格朗日插值)的更多相关文章

  1. Codeforces F. Cowmpany Cowmpensation

    Description 有一棵树,现在要给每个节点赋一个在1到D之间的权值,问有多少种方案满足任意一个节点的权值都不大于其父亲的权值. n<=3000,D<=1e9 题面 Solution ...

  2. F. Cowmpany Cowmpensation dp+拉格朗日插值

    题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...

  3. 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)

    [CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...

  4. CF 622 F The Sum of the k-th Powers —— 拉格朗日插值

    题目:http://codeforces.com/contest/622/problem/F 设 f(x) = 1^k + 2^k + ... + n^k 则 f(x) - f(x-1) = x^k ...

  5. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  6. 【CF995F】 Cowmpany Cowmpensation

    CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...

  7. 拉格朗日插值优化DP

    拉格朗日插值优化DP 模拟赛出现神秘插值,太难啦!! 回忆拉格朗日插值是用来做什么的 对于一个多项式\(F(x)\),如果已知它的次数为\(m - 1\),且已知\(m\)个点值,那么可以得到 \[F ...

  8. 【CF995F】Cowmpany Cowmpensation

    [CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...

  9. 常系数齐次线性递推 & 拉格朗日插值

    常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...

随机推荐

  1. 读书笔记_python网络编程3(6)

    6.TLS/SSL 6.0. 传输层安全协议(TLS, Transport Layer Security)是如今web上应用最广泛的加密方法了,1999年成为互联网标准.前身是安全套接层(SSL, S ...

  2. MySQL 锁的监控及处理

    故障模拟 # 添加两项配置 vi /etc/my.cnf [mysqld] autocommit=0 innodb_lock_wait_timeout = 3600 systemctl restart ...

  3. Scrapy安装和简单使用

    模块安装 Windows 安装scrapy 需要安装依赖环境twisted,twisted又需要安装C++的依赖环境 pip install scrapy  时 如果出现twisted错误 在http ...

  4. 002 C/C++ 数组的传递

    传递一个数组给一个函数的正确做法: 1.传递数组的内存首地址. 2.传递数组的有效长度.指数组的元素数量. 编译器总是将数组类型的变量作为指针传递. 计算数组的长度: int length = siz ...

  5. java直接存取MS Access的mdb数据库文件

    jdbc 访问 access 的 mdb 数据库文件,使用一个叫ucanaccess的开发包实现这个功能. "Supported Access formats: 2000,2002/2003 ...

  6. rasa结合kashgari训练数据时,out of memory错误

    这两天新搬办公室,网络不好用,将就了.博客园也上不了,github也上不了了,工作效率降低不少.今天遇到同事使用rasa用机器人项目的问题,一个4核的Tesla K80 GPU,性能照说不差,但一运行 ...

  7. prometheus监控tomcat

    下载tomcat,wget **;解压tar zxvf **; 下载jmx_exporter, wget  https://repo1.maven.org/maven2/io/prometheus/j ...

  8. 算法问题实战策略 BOARDCOVER

    地址 https://algospot.com/judge/problem/read/BOARDCOVER 解法 DFS 最近似乎在简单DFS上花费太多时间了 首先扫描地图 统计可覆盖的元素个数 如果 ...

  9. python爬虫初认识

    一.爬虫是什么? 如果我们把互联网比作一张大的蜘蛛网,数据便是存放于蜘蛛网的各个节点,而爬虫就是一只小蜘蛛, 沿着网络抓取自己的猎物(数据)爬虫指的是:向网站发起请求,获取资源后分析并提取有用数据的程 ...

  10. 加速自己的hexo,使用GitHub+Coding实现国内外网站加速

    在配置好hexo之后,我们发现访问网站很慢,但又不是我们使用的主题的问题,那么就是网络环境的影响,即使我们使用了CDN加速,但还是没有我们国内的网站访问起来快速,(听说去美国的服务器要经过太平洋下面的 ...