问题描述

LG3389


题解

高斯消元,是用来解\(n\)元一次方程组的算法,时间复杂度\(O(n^3)\)

这样就构造出了这个方程组的矩阵

目标就是把这个矩阵左边\(n \times n\)消为单位矩阵


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; void read(int &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') fh=-1,ch=getchar();
else fh=1;
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
x*=fh;
} #define maxn 107 int n; double a[maxn][maxn]; int pla; int main(){
ios::sync_with_stdio(0);
cin>>n;
for(register int i=1;i<=n;i++){
for(register int j=1;j<=n+1;j++) cin>>a[i][j];
}
for(register int i=1;i<=n;i++){
pla=i;
while(pla<=n&&a[pla][i]==0) pla++;
if(pla==n+1){//如果第i列没有非0的,显然无解
puts("No Solution");return 0;
}
for(register int j=1;j<=n+1;j++) swap(a[i][j],a[pla][j]);//交换到第i行
double tmp=a[i][i];
for(register int j=1;j<=n+1;j++) a[i][j]=a[i][j]/tmp;//消除第i行
for(register int j=1;j<=n;j++){
if(i==j) continue;
double rp=a[j][i];
for(register int k=1;k<=n+1;k++){
a[j][k]=a[j][k]-rp*a[i][k];//消除其他
}
}
}
for(register int i=1;i<=n;i++){
cout<<fixed<<setprecision(2)<<a[i][n+1]<<endl;
}
return 0;
}

LG3389 「模板」高斯消元法 高斯消元的更多相关文章

  1. 洛谷P4783 【模板】矩阵求逆(高斯消元)

    题意 题目链接 Sol 首先在原矩阵的右侧放一个单位矩阵 对左侧的矩阵高斯消元 右侧的矩阵即为逆矩阵 // luogu-judger-enable-o2 #include<bits/stdc++ ...

  2. 【Luogu】P3389高斯消元模板(矩阵高斯消元)

    题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]) ...

  3. LUOGU P4783 【模板】矩阵求逆(高斯消元)

    传送门 解题思路 用高斯消元对矩阵求逆,设\(A*B=C\),\(C\)为单位矩阵,则\(B\)为\(A\)的逆矩阵.做法是把\(B\)先设成单位矩阵,然后对\(A\)做高斯消元的过程,对\(B\)进 ...

  4. 矩阵&&高斯消元

    矩阵运算: \(A\times B\)叫做\(A\)左乘\(B\),或者\(B\)右乘\(A\). 行列式性质: \(1.\)交换矩阵的两行(列),行列式取相反数. \(2.\)某一行元素都\(\ti ...

  5. BZOJ3601. 一个人的数论(狄利克雷卷积+高斯消元)及关于「前 $n$ 个正整数的 $k$ 次幂之和是关于 $n$ 的 $k+1$ 次多项式」的证明

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &a ...

  6. LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt

    题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...

  7. 「ZOJ 1354」Extended Lights Out「高斯消元」

    题意:给定一个\(5\times 6\)的棋盘的\(01\)状态,每次操作可以使它自己和周围四个格子状态取反,求如何操作,输出一个\(01\)矩阵 题解:这题可以通过枚举第一行的状态然后剩下递推来做, ...

  8. 「BZOJ 3270」博物馆「高斯消元」

    应该算高斯消元经典题了吧. 题意:一个无向连通图,有两个人分别在\(s,t\),若一个人在\(u\),每一分钟有\(p[u]\)的概率不动,否则随机前往一个相邻的结点,求在每个点相遇的概率 题解: 首 ...

  9. LG2447/BZOJ1923 「SDOI2010」外星千足虫 高斯消元

    问题描述 LG2447 BZOJ1923 题解 显然是一个高斯消元,但是求的东西比较奇怪 发现这个方程组只关心奇偶性,于是可以用一个\(\mathrm{bitset}\)进行优化,用xor来进行消元操 ...

随机推荐

  1. 201871010124 王生涛《面向对象程序设计JAVA》第一周学习总结

    项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://edu.cnblogs.com/campus/xbsf/ ...

  2. R语言-记号体系

    安装xlsx包 #装之前先装jdk,配置环境变量 install.packages("xlsx") 代表安装成功 必须先加载包然后再使用包library() $提取符号 当一个函数 ...

  3. 如何在python中使用Elasticsearch

    什么是 Elasticsearch ​ 想查数据就免不了搜索,搜索就离不开搜索引擎,百度.谷歌都是一个非常庞大复杂的搜索引擎,他们几乎索引了互联网上开放的所有网页和数据.然而对于我们自己的业务数据来说 ...

  4. 用 Python 批量下载百度图片

    ​ 为了做一个图像分类的小项目,需要制作自己的数据集.要想制作数据集,就得从网上下载大量的图片,再统一处理. 这时,一张张的保存下载,就显得很繁琐.那么,有没有一种方法可以把搜索到的图片直接下载到本地 ...

  5. Python开发GUI实战:图片转换素描画工具!

    奋斗没有终点 好好学习72变,因为将来 没有人能替你阻挡81难 . 生如蝼蚁,当有鸿鹄之志: 命如纸薄,应有不屈之心 . ​ 今天被这句话触动了,所以开篇分享给大家.鸡汤有毒,但有时大家却靠它激励自己 ...

  6. python 操作zookeeper详解

    ZooKeeper 简介 ZooKeeper 是一个分布式的.开放源码的分布式应用程序协调服务,是 Google 的 Chubby 一个开源的实现,是 Hadoop 和 Hbase 的重要组件.它是一 ...

  7. Algorithm: Prime & Euler Function & Productive Function

    素数筛 朴素算法 一般来说,可以用试除法判断某一个数是不是素数: bool isPrime(int n) { if(n < 2) return false; for(int i = 2; i & ...

  8. 百度ai语音识别

    //语音识别功能 var APP_ID = "149**323"; var API_KEY = "N1Po****o6WPUeU8er"; var SECRET ...

  9. python基础(11):函数(一)

    1. 什么是函数 1.我们到⽬前为⽌,已经可以完成⼀些软件的基础功能了.那么我们来完成这样⼀个功能: 约会: print("拿出⼿机") print("打开陌陌" ...

  10. Dynamics 365本地部署版本配置OAuth 2 Password Grant以调用Web API

    微软动态CRM专家罗勇 ,回复330或者20190504可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me! 根据官方建议,不要再使用Dynamics 365 Custome ...