dijkstra,belllman-ford,spfa最短路算法
时间复杂度对比:
Dijkstra: O(n2)
Dijkstra + 优先队列(堆优化): O(E+V∗logV)
SPFA: O(k∗E) ,k为每个节点进入队列的次数,一般小于等于2,最坏情况为O(V∗E)
BellmanFord: O(V∗E) ,可检测负圈
Floyd: O(n3) 计算每对节点之间的最短路径
结论:
① 当权值为非负时,用Dijkstra。
② 当权值有负值,且没有负圈,则用SPFA,SPFA能检测负圈,但是不能输出负圈。
③ 当权值有负值,而且可能存在负圈,则用BellmanFord,能够检测并输出负圈。
④ SPFA检测负环:当存在一个点入队大于等于V次时,则有负环。
dijkstra,belllman-ford,spfa最短路算法的更多相关文章
- 【算法】祭奠spfa 最短路算法dijspfa
题目链接 本题解来源 其他链接 卡spfa的数据组 题解堆优化的dijkstra 题解spfa讲解 来自以上题解的图片来自常暗踏阴 使用前向星链表存图 直接用队列优化spfa struct cmp { ...
- SPFA 最短路算法
SPFA算法 1.什么是spfa算法? SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA一般情况复杂度是O(m)O(m) ...
- SPFA最短路算法
SPFA是改良后的BellmanFord(在刘汝佳的入门经典2上,甚至直接将SPFA归为BellmanFord的队列优化版本). 这是算法的伪代码 d[s] = 0, 其余d[?] = INF; 将s ...
- 【最短路算法】Dijkstra+heap和SPFA的区别
单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...
- 最短路算法详解(Dijkstra/SPFA/Floyd)
新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...
- 最短路算法(floyed+Dijkstra+bellman-ford+SPFA)
最短路算法简单模板 一.floyed算法 首先对于floyed算法来说就是最短路径的动态规划解法,时间复杂度为O(n^3) 适用于图中所有点与点之间的最短路径的算法,一般适用于点n较小的情况. Flo ...
- 算法专题 | 10行代码实现的最短路算法——Bellman-ford与SPFA
今天是算法数据结构专题的第33篇文章,我们一起来聊聊最短路问题. 最短路问题也属于图论算法之一,解决的是在一张有向图当中点与点之间的最短距离问题.最短路算法有很多,比较常用的有bellman-ford ...
- 10行实现最短路算法——Dijkstra
今天是算法数据结构专题的第34篇文章,我们来继续聊聊最短路算法. 在上一篇文章当中我们讲解了bellman-ford算法和spfa算法,其中spfa算法是我个人比较常用的算法,比赛当中几乎没有用过其他 ...
- Dijkstra 最短路算法(只能计算出一条最短路径,所有路径用dfs)
上周我们介绍了神奇的只有五行的 Floyd 最短路算法,它可以方便的求得任意两点的最短路径,这称为"多源最短路".本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做&q ...
随机推荐
- WeQuant教程—1.3 利用回测工具降低交易风险
量化系统投入实际使用之前,人们会希望提前测试交易的效果.这个期间往往涉及代码的改动和参数的调整.最常见的做法是将历史数据输入量化系统,让量化系统根据既定的交易逻辑进行操作,观察和分析交易结果,找到问题 ...
- react一些问题
一.死循环 1.问题描述 function handleClick() { this.setState({count: ++this.state.count}); console.log(" ...
- ghostscript之pdf处理
ghostscript安装: yum install ghostscript 使用: #把tmp目录下的a.pdf压缩成b.pdf gs -sDEVICE=pdfwrite -dPDFSETTINGS ...
- 百度AI文本审核API使用说明
虽然,虽然,虽然,今天: 百度发布了2019年第一季度未经审计的财务报告.本季度百度营收241亿元人民币(约合35.9亿美元),同比增长15%,移除业务拆分收入影响,同比增长21%.低于市场预期242 ...
- spark 性能优化简要总结
1.从同一个数据源尽量只创建一个rdd,后续业务逻辑复用该rdd2.如果要对某个rdd进行多次的transformation或action操作,应当持久化该rdd3.从数据源读取到rdd后,要尽早的进 ...
- ChecklistForTest
相关字段内容较长时,页面显示是否正确(包括各主页面.明细页面.打印预览页面) 数据量较多时,页面显示是否正确(包括各主页面.明细页面.打印预览页面) 各字段为空校验(都为空,部分为空,都不为空)是否正 ...
- javascript两种循环写法
var i=0,len=cars.length; for (; i<len; ) { document.write(cars[i] + "<br>"); i++; ...
- Java基础教程(26)--反射
一.类 对于每一种类型的对象,Java虚拟机都会实例化一个java.lang.Class类的不可变实例.该实例提供了获取对象的运行时属性的方法,包括它的成员和类型信息.Class类还提供了创建新实 ...
- c语言 判断字符串长度 实现
/* 首先明白答案的本质(该函数)是一个计数器该计数器用for循环来实现实现对一串字符串的计数字符串以空格开头 不计算空格 计算空格后的数字直到遇到\0结束.num计算器字符串不以空格结束 计算空格后 ...
- 《JAVA高并发编程详解》-七种单例模式