RANSEC算法
移步:https://blog.csdn.net/u010128736/article/details/53422070
clc;clear;close all; %%%二维直线拟合
%%%生成随机数据
%内点
mu=[ ]; %均值
S=[ 2.5;2.5 ]; %协方差
data1=mvnrnd(mu,S,); %产生200个高斯分布数据
%外点
mu=[ ];
S=[ ; ];
data2=mvnrnd(mu,S,); %产生100个噪声数据
%合并数据
data=[data1',data2'];
iter = ; %%% 绘制数据点
figure;plot(data(,:),data(,:),'o');hold on; % 显示数据点
number = size(data,); % 总点数
bestParameter1=; bestParameter2=; % 最佳匹配的参数
sigma = ;
pretotal=; %符合拟合模型的数据的个数 for i=:iter
%%% 随机选择两个点
idx = randperm(number,);
sample = data(:,idx); %%%拟合直线方程 y=kx+b
line = zeros(,);
x = sample(:, );
y = sample(:, ); k=(y()-y())/(x()-x()); %直线斜率
b = y() - k*x();
line = [k - b] mask=abs(line*[data; ones(,size(data,))]); %求每个数据到拟合直线的距离
total=sum(mask<sigma); %计算数据距离直线小于一定阈值的数据的个数 if total>pretotal %找到符合拟合直线数据最多的拟合直线
pretotal=total;
bestline=line; %找到最好的拟合直线
end
end
%显示符合最佳拟合的数据
mask=abs(bestline*[data; ones(,size(data,))])<sigma;
hold on;
k=;
for i=:length(mask)
if mask(i)
inliers(,k) = data(,i);
k=k+;
plot(data(,i),data(,i),'+');
end
end %%% 绘制最佳匹配曲线
bestParameter1 = -bestline()/bestline();
bestParameter2 = -bestline()/bestline();
xAxis = min(inliers(,:)):max(inliers(,:));
yAxis = bestParameter1*xAxis + bestParameter2;
plot(xAxis,yAxis,'r-','LineWidth',);
title(['bestLine: y = ',num2str(bestParameter1),'x + ',num2str(bestParameter2)]);
RANSEC算法的更多相关文章
- B树——算法导论(25)
B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...
- 分布式系列文章——Paxos算法原理与推导
Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资 ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 红黑树——算法导论(15)
1. 什么是红黑树 (1) 简介 上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极 ...
- 散列表(hash table)——算法导论(13)
1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列 ...
- 虚拟dom与diff算法 分析
好文集合: 深入浅出React(四):虚拟DOM Diff算法解析 全面理解虚拟DOM,实现虚拟DOM
- 简单有效的kmp算法
以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说 ...
- 神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...
- 46张PPT讲述JVM体系结构、GC算法和调优
本PPT从JVM体系结构概述.GC算法.Hotspot内存管理.Hotspot垃圾回收器.调优和监控工具六大方面进行讲述.(内嵌iframe,建议使用电脑浏览) 好东西当然要分享,PPT已上传可供下载 ...
随机推荐
- 解决计算精度问题:BigDecimal
BigDecimal类 BigDecimal所在包:java.math,不可变的.任意精度的有符号十进制数.BigDecimal 由任意精度的整数非标度值 和 32 位的整数标度 (scale) 组成 ...
- ES(ElasticSearch)文档的表现形式以及增删改查
1. ES中的文档 ES是面向文档(document oriented)的,这意味着它可以存储整个对象或文档(document).然而它不仅仅是存储,还会索引(index)每个文档的内容使之可以被搜索 ...
- 嵌入式02 STM32 实验02 端口输入输出各4种模式
GPIO(General-purpose input/output 通用目的输入/输出端口) 电压(A模拟量)与电平(D数字量) GPIO 8种工作模式(输入四种.输出四种) 1.GPIO_Mode_ ...
- python 安装pytorch 及 安装失败解决办法
python 安装pytorch 及 安装失败解决办法 [转] pytorch安装失败解决办法 [转] 一分钟在win10终端成功安装pytorch pytorch 的安装方法有2种,一种是pip安装 ...
- 下载安装GO,编辑器GOLand和在GOLand上运行项目的几种方式
下载安装GO 下载GO地址:https://golang.google.cn/dl/,一直下一步下一步的操作. 安装完成之后,会有一个GOPATH(此路径是创建go项目的时候会自动在该文件夹下创建), ...
- Qt5 源代码自动跳转
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/nixiaoxianggong/articl ...
- java 正则和连接json
前面已经写了不少关于C# 怎么使用正则,有兴趣,可以翻译成java代码. 以图片为例子: import java.util.regex.Matcher; import java.util.regex. ...
- 2019年北航OO第三次博客总结
一.JML语言理论基础及其工具链 1. JML语言理论基础 JML是用于对Java程序进行规格化设计的一种表示语言,是一种行为接口规格语言(Behavior Interface Specificati ...
- border-radius圆角属性
border-radius圆角 当盒子的宽高一样时,设置盒子的border-radius为50%,得到一个圆形 border-radius: 20px 30px 200px 200px; 只写一个值: ...
- ERROR: Cannot uninstall 'chardet'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.
pip 安装 docker库报错: ERROR: Cannot uninstall 'chardet'. It is a distutils installed project and thus we ...