51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3
1040 最大公约数之和
给出一个n,求1-n这n个数,同n的最大公约数的和。比如:n = 6
1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15
输入
1个数N(N <= 10^9)
输出
公约数之和
输入样例
6
输出样例
15
题解
\]
暴力搞就行了。
1188 最大公约数之和 V2
给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和。
相当于计算这段程序(程序中的gcd(i,j)表示i与j的最大公约数):
G=0
for i=1 to N
for j=i+1 to N
G+=gcd(i,j)
输入
第1行:1个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)
第2 - T + 1行:每行一个数N。(2 <= N <= 5000000)
输出
共T行,输出最大公约数之和。
输入样例
3
10
100
200000
输出样例
67
13015
143295493160
1237 最大公约数之和 V3
给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和。
相当于计算这段程序(程序中的gcd(i,j)表示i与j的最大公约数):
由于结果很大,输出Mod 1000000007的结果。
G=0
for i=1 to N
for j=1 to N
G = (G + gcd(i,j)) mod 1000000007;
输入
输入一个数N。(2 <= N <= 10^10)
输出
输出G Mod 1000000007的结果。
输入样例
100
输出样例
31080
可以看出来,T2,T3转化一下就只有数据范围不同。
题解
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}[\gcd(i,j)=1]\\
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}\sum_{d'|\gcd(i,j)}\mu(d)\\
=\sum_{d=1}^nd\sum_{d'=1}^{\lfloor\frac nd\rfloor}\mu(d')\lfloor\frac n{dd'}\rfloor^2
\]
整除分块两次,区别在于第二次。
- V2可以直接线性筛求出\(\mu\)前缀和。
- V3必须使用杜教筛,让\(\mu * I\)即可。
1363 最小公倍数之和
1.5 秒 131,072.0 KB 160 分 6 级题
给出一个n,求1-n这n个数,同n的最小公倍数的和。
例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。
由于结果很大,输出Mod 1000000007的结果。
输入
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)
第2 - T + 1行:T个数A[i](A[i] <= 10^9)
输出
共T行,输出对应的最小公倍数之和
输入样例
3
5
6
9
输出样例
55
66
279
这题跟[SPOJ LCMsum](https://www.cnblogs.com/autoint/p/9892650.html)是一样的,只不过数据范围不一样,所以推到后面的操作不一样。
## [Star_Feel](https://www.cnblogs.com/Never-mind/p/9882196.html)的题解
原题相当于求$\sum_{i=1}^{n}\frac{i*n}{gcd(i,n)}$
先枚举\(d=\gcd(i,n)\),然后化简得到
\]
相当于求\(1\)到\(n-1\)中,与\(n\)互质的数和,设\(y<x\),如果\(\gcd(y,x)=1\),那么\(\gcd(x-y,x)=1\),两式的贡献就是\(x\)了
所以\(1\)到\(n-1\)中,与\(n\)互质的数和为\(\frac{\phi(n)*n}{2}\),特殊的,如果\(n=1,2\),则和为\(1\)
那么原式就等于
\]
再化简得到
\]
这样,这个式子就变成\(O(\sqrt{n})\),但是多组数据仍会超时
实际上我们将\(n\)质因数分解得到\(n=\prod_{i=1}^{x}p[i]^a[i]\)
因为\(p[i]\)两两互质,所以可以转化为
\]
根据欧拉函数的性质可以得到
\]
再根据等比数列求和公式得到
=n+\prod_{i=1}^{x}1+\frac{p[i]^{2*a[i]+1}-p[i]}{p[i]+1}
\]
然后线筛素数加速质因数分解就可以过了,记得最后处理\(1,2\)的情况
1190 最小公倍数之和 V2
给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b)。
例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。
由于结果可能很大,输出Mod 10^9 + 7的结果。(测试数据为随机数据,没有构造特别坑人的Test)
输入
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)
第2 - T + 1行:每行2个数a, b,中间用空格分隔(1 <= a <= b <= 10^9)
输出
共T行,输出对应的最小公倍数之和Mod 10^9 + 7的结果。
输入样例
3
1 6
10 15
41 90
输出样例
66
675
139860
Cold_Chair的题解
= b*\sum_{d | b} \sum_{i = \lfloor{ {a} \over {d}}\rfloor}^{\lceil{ {b} \over {d}}\rceil} i * [\gcd(i, { {b} \over {d}}) = 1] \\
= b*\sum_{d | b} \sum_{i = \lfloor{ {a} \over {d}}\rfloor}^{\lceil{ {b} \over {d}}\rceil} i * \sum_{d' | \gcd(i, { {b} \over {d}})} μ(d') \\
= b*\sum_{d | b} \sum_{d' | { {b} \over {d}}} μ(d') * d' * \sum_{i = \lfloor{ {b} \over {d }}\rfloor}^{\lceil{ {a} \over {d}}\rceil}i*[d' | i] \\
= b*\sum_{d | b} \sum_{d' | { {b} \over {d}}} μ(d') * d' * \sum_{i = \lfloor{ {b} \over {d*d' }}\rfloor}^{\lceil{ {a} \over {d * d'}}\rceil}i \\
= b*\sum_{d | b} \sum_{d' | { {b} \over {d}}} μ(d') * d' * (\lfloor{ {b} \over {d*d' }}\rfloor - \lceil{ {a} \over {d * d'}}\rceil + 1) * (\lfloor{ {b} \over {d*d' }}\rfloor + \lceil{ {a} \over {d * d'}}\rceil) / 2
\]
设$T = d * d’ $
\]
我们观察一下$\sum_{d | T} μ(d) * d \(
狄利克雷卷积做了这么多,轻松可得:
若\)T = \prod{p_i^{q_i}}$,那么
\]
1238 最小公倍数之和 V3
出一个数N,输出小于等于N的所有数,两两之间的最小公倍数之和。
相当于计算这段程序(程序中的lcm(i,j)表示i与j的最小公倍数):
由于结果很大,输出Mod 1000000007的结果。
G=0
for i=1 to N
for j=1 to N
G = (G + lcm(i,j)) mod 1000000007;
输入
输入一个数N。(2 <= N <= 10^10)
输出
输出G Mod 1000000007的结果。
输入样例
4
输出样例
72
题解
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}ij[\gcd(i,j)=1]\\
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}ij\sum_{d'|\gcd(i,j)}\mu(d)\\
=\sum_{d=1}^nd\sum_{d'=1}^{\lfloor\frac nd\rfloor}\mu(d')(d')^2\left(\sum_{i=1}^{\lfloor\frac n{dd'}\rfloor}i\right)^2
\]
然后就变成了LG3768 简单的数学题,外面多套了一个整除分块,不过不影响复杂度。(毒瘤)
51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3的更多相关文章
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 51nod 1190 最小公倍数之和 V2
给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b). 例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30 ...
- 51nod 1363 最小公倍数之和 ——欧拉函数
给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...
- 51nod1363 最小公倍数之和
题目描述 给出一个n,求1-n这n个数,同n的最小公倍数的和. 例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mo ...
- 2019t1_sumdoc_list.txt aa.docx acc baidu v2 sbb.docx Acc jindon v2 sbb.docx assetsList.html Atiitt 日本刑法典读后笔记.docx Atiti 遇到说花心的时候赞美应对.docx Atitit lesson.docx Atitit malye主义、mzd思想和dsp理论的区别和联系.docx Ati
2019t1_sumdoc_list.txtaa.docxacc baidu v2 sbb.docxAcc jindon v2 sbb.docxassetsList.htmlAtiitt 日本刑法典读 ...
- Kinect v1 (Microsoft Kinect for Windows v1 )彩色和深度图像对的采集步骤
Kinect v1 (Microsoft Kinect for Windows v1 )彩色和深度图像对的采集步骤 一.在ubuntu下尝试 1. 在虚拟机VWware Workstation 12. ...
- Kinect v2(Microsoft Kinect for Windows v2 )配置移动电源解决方案
Kinect v2配置移动电源解决方案 Kinect v2如果用于移动机器人上(也可以是其他应用场景),为方便有效地展开后续工作,为其配置移动电源是十分必要的. 一.选择移动电源 Kinect v2原 ...
- 51Nod 最小公倍数之和V3
这题公式真tm难推……为了这题费了我一个草稿本…… woc……在51Nod上码LaTeX码了两个多小时…… 一开始码完了前半段,刚码完后半段突然被51Nod吃了,重新码完后半段之后前半段又被吃了,吓得 ...
随机推荐
- Linux thread process and kernel mode and user mode page table
Linux 中线程和进程切换的开销: Linux 操作系统层面的进程和线程的实现都是task_struct描述符. task_struct 包含成员变量:内核态stack. 这些都存在3-4G虚拟地 ...
- Connection: close和Connection: keep-alive有什么区别
转自:https://www.cnblogs.com/TinyMing/p/4597136.html 看到有人问Connection: close和Connection: keep-alive有什么区 ...
- 通过元类创建一个Python类
通过元类创建一个Python类 最开始学pytohn的时候我们这样定义类 class ClassName: pass 当熟悉了元类的概念之后我们还可以这样创建 ClassName = type(&qu ...
- liunx mysql数据库目录迁移
1.查看mysql安装目录 从目录etc/my.cnf中查看安装目录 2.进入mysql目录,停止mysql服务 命令: cd usr/local/mysql 命令:service mysql sto ...
- char * const * (*a) (int b)
char * const * (*a) (int b), 按照c++ program language的读法,从右往左读,* 读作pointer to 把(*a) (int b看作整体, (*a) ( ...
- OSGI.NET插件方式开发你的应用
之前一直从事C# WEB开发.基本都是业务开发,性能优化. 体力活占比90%吧.模块真的很多很多,每次部署经常出先各种问题.发布经常加班. 今年开始接触winform 开发.发现C# 的事件 委托 ...
- 单例DCL模式
单例模式可以保证系统中一个类只有一个实例.即一个类只有一个对象实例. 一般写法 public class DCLSingle { public static DCLSingle instance= n ...
- HTML的基本概念
HTML语言是一种纯文本类.依靠解释的方式执行的标记语言,它是Internet上用于编写网页的主要语言.用HTML编写的超文本文件称为HTML文件,也是标准的纯文本文件. 当今构成网页文档主要是用HT ...
- Linux 基础学习1
目录 Linux 基础学习 用户登录 终端 交互式接口 bash 修改ssh连接慢的步骤 命令提示符 显示提示符格式 命令 别名 命令格式 获取命令的帮助信息 man bash 快捷键 tab 键 引 ...
- 获取项目中所有URL--获取swagger上展示的接口信息
有时我们需要接口的一些基本信息,比如接口请求路径,接口请求方式等,我们用这些信息来做判断,或者入库. 我在开发接口权限的时候就遇到了这个问题,之前写的接口很多,现在需要将这些接口信息存到数据库中, 用 ...