1040 最大公约数之和

给出一个n,求1-n这n个数,同n的最大公约数的和。比如:n = 6

1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15

输入

1个数N(N <= 10^9)

输出

公约数之和

输入样例

6

输出样例

15

题解

\[\sum_{i=1}^n\gcd(i,n)=\sum_{d|n}d\varphi(n)
\]

暴力搞就行了。

1188 最大公约数之和 V2

给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和。

相当于计算这段程序(程序中的gcd(i,j)表示i与j的最大公约数):

G=0
for i=1 to N
for j=i+1 to N
G+=gcd(i,j)

输入

第1行:1个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)

第2 - T + 1行:每行一个数N。(2 <= N <= 5000000)

输出

共T行,输出最大公约数之和。

输入样例

3

10

100

200000

输出样例

67

13015

143295493160

1237 最大公约数之和 V3

给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和。

相当于计算这段程序(程序中的gcd(i,j)表示i与j的最大公约数):

由于结果很大,输出Mod 1000000007的结果。

G=0
for i=1 to N
for j=1 to N
G = (G + gcd(i,j)) mod 1000000007;

输入

输入一个数N。(2 <= N <= 10^10)

输出

输出G Mod 1000000007的结果。

输入样例

100

输出样例

31080

可以看出来,T2,T3转化一下就只有数据范围不同。

题解

\[\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\\
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}[\gcd(i,j)=1]\\
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}\sum_{d'|\gcd(i,j)}\mu(d)\\
=\sum_{d=1}^nd\sum_{d'=1}^{\lfloor\frac nd\rfloor}\mu(d')\lfloor\frac n{dd'}\rfloor^2
\]

整除分块两次,区别在于第二次。

  • V2可以直接线性筛求出\(\mu\)前缀和。
  • V3必须使用杜教筛,让\(\mu * I\)即可。

1363 最小公倍数之和

1.5 秒 131,072.0 KB 160 分 6 级题

给出一个n,求1-n这n个数,同n的最小公倍数的和。

例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。

由于结果很大,输出Mod 1000000007的结果。

输入

第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)

第2 - T + 1行:T个数A[i](A[i] <= 10^9)

输出

共T行,输出对应的最小公倍数之和

输入样例

3

5

6

9

输出样例

55

66

279


这题跟[SPOJ LCMsum](https://www.cnblogs.com/autoint/p/9892650.html)是一样的,只不过数据范围不一样,所以推到后面的操作不一样。
## [Star_Feel](https://www.cnblogs.com/Never-mind/p/9882196.html)的题解
原题相当于求$\sum_{i=1}^{n}\frac{i*n}{gcd(i,n)}$

先枚举\(d=\gcd(i,n)\),然后化简得到

\[n*\sum_{d|n}\sum_{i=1}^{\frac{n}{d}}i[\gcd(i,\frac{n}{d})=1]
\]

相当于求\(1\)到\(n-1\)中,与\(n\)互质的数和,设\(y<x\),如果\(\gcd(y,x)=1\),那么\(\gcd(x-y,x)=1\),两式的贡献就是\(x\)了

所以\(1\)到\(n-1\)中,与\(n\)互质的数和为\(\frac{\phi(n)*n}{2}\),特殊的,如果\(n=1,2\),则和为\(1\)

那么原式就等于

\[n*\sum_{d|n且d不为n}\frac{\frac{n}{d}*\phi(\frac{n}{d})}{2}+1
\]

再化简得到

\[n+\frac{n}{2}\sum_{d|n且d>1}d*phi(d)
\]

这样,这个式子就变成\(O(\sqrt{n})\),但是多组数据仍会超时

实际上我们将\(n\)质因数分解得到\(n=\prod_{i=1}^{x}p[i]^a[i]\)

因为\(p[i]\)两两互质,所以可以转化为

\[n+\prod_{i=1}^{x}\sum_{j=0}^{a[i]}\phi(p[i]^j)*p[i]^j
\]

根据欧拉函数的性质可以得到

\[n+\prod_{i=1}^{x}1+\sum_{j=1}^{a[i]}(p[i]-1)*p[i]^{2j-1}
\]

再根据等比数列求和公式得到

\[n+\prod_{i=1}^{x}1+(p[i]-1)*\frac{p[i]^{2*a[i]+1}-p[i]}{p[i]^2-1}\\
=n+\prod_{i=1}^{x}1+\frac{p[i]^{2*a[i]+1}-p[i]}{p[i]+1}
\]

然后线筛素数加速质因数分解就可以过了,记得最后处理\(1,2\)的情况

1190 最小公倍数之和 V2

给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b)。

例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。

由于结果可能很大,输出Mod 10^9 + 7的结果。(测试数据为随机数据,没有构造特别坑人的Test)

输入

第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)

第2 - T + 1行:每行2个数a, b,中间用空格分隔(1 <= a <= b <= 10^9)

输出

共T行,输出对应的最小公倍数之和Mod 10^9 + 7的结果。

输入样例

3

1 6

10 15

41 90

输出样例

66

675

139860

Cold_Chair的题解

\[ans = \sum_{i = a}^b \textrm{lcm}(i) \\
= b*\sum_{d | b} \sum_{i = \lfloor{ {a} \over {d}}\rfloor}^{\lceil{ {b} \over {d}}\rceil} i * [\gcd(i, { {b} \over {d}}) = 1] \\
= b*\sum_{d | b} \sum_{i = \lfloor{ {a} \over {d}}\rfloor}^{\lceil{ {b} \over {d}}\rceil} i * \sum_{d' | \gcd(i, { {b} \over {d}})} μ(d') \\
= b*\sum_{d | b} \sum_{d' | { {b} \over {d}}} μ(d') * d' * \sum_{i = \lfloor{ {b} \over {d }}\rfloor}^{\lceil{ {a} \over {d}}\rceil}i*[d' | i] \\
= b*\sum_{d | b} \sum_{d' | { {b} \over {d}}} μ(d') * d' * \sum_{i = \lfloor{ {b} \over {d*d' }}\rfloor}^{\lceil{ {a} \over {d * d'}}\rceil}i \\
= b*\sum_{d | b} \sum_{d' | { {b} \over {d}}} μ(d') * d' * (\lfloor{ {b} \over {d*d' }}\rfloor - \lceil{ {a} \over {d * d'}}\rceil + 1) * (\lfloor{ {b} \over {d*d' }}\rfloor + \lceil{ {a} \over {d * d'}}\rceil) / 2
\]

设$T = d * d’ $

\[= b*\sum_{T | b}(\lfloor{ {b} \over {T}}\rfloor - \lceil{ {a} \over {T}}\rceil + 1) * (\lfloor{ {b} \over {T}}\rfloor + \lceil{ {a} \over {T}}\rceil) / 2 * \sum_{d | T} μ(d) * d
\]

我们观察一下$\sum_{d | T} μ(d) * d \(
狄利克雷卷积做了这么多,轻松可得:
若\)T = \prod{p_i^{q_i}}$,那么

\[\sum_{d | T} μ(d) * d = \prod{1-p_i}
\]

1238 最小公倍数之和 V3

出一个数N,输出小于等于N的所有数,两两之间的最小公倍数之和。

相当于计算这段程序(程序中的lcm(i,j)表示i与j的最小公倍数):

由于结果很大,输出Mod 1000000007的结果。

G=0
for i=1 to N
for j=1 to N
G = (G + lcm(i,j)) mod 1000000007;

输入

输入一个数N。(2 <= N <= 10^10)

输出

输出G Mod 1000000007的结果。

输入样例

4

输出样例

72

题解

\[\sum_{i=1}^n\sum_{j=1}^n\textrm{lcm}(i,j)=\sum_{i=1}^n\sum_{j=1}^n\frac{ij}{\gcd(i,j)}\\
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}ij[\gcd(i,j)=1]\\
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}ij\sum_{d'|\gcd(i,j)}\mu(d)\\
=\sum_{d=1}^nd\sum_{d'=1}^{\lfloor\frac nd\rfloor}\mu(d')(d')^2\left(\sum_{i=1}^{\lfloor\frac n{dd'}\rfloor}i\right)^2
\]

然后就变成了LG3768 简单的数学题,外面多套了一个整除分块,不过不影响复杂度。(毒瘤)

51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3的更多相关文章

  1. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  2. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  3. 51nod 1190 最小公倍数之和 V2

    给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b). 例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30 ...

  4. 51nod 1363 最小公倍数之和 ——欧拉函数

    给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...

  5. 51nod1363 最小公倍数之和

    题目描述 给出一个n,求1-n这n个数,同n的最小公倍数的和. 例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mo ...

  6. 2019t1_sumdoc_list.txt aa.docx acc baidu v2 sbb.docx Acc jindon v2 sbb.docx assetsList.html Atiitt 日本刑法典读后笔记.docx Atiti 遇到说花心的时候赞美应对.docx Atitit lesson.docx Atitit malye主义、mzd思想和dsp理论的区别和联系.docx Ati

    2019t1_sumdoc_list.txtaa.docxacc baidu v2 sbb.docxAcc jindon v2 sbb.docxassetsList.htmlAtiitt 日本刑法典读 ...

  7. Kinect v1 (Microsoft Kinect for Windows v1 )彩色和深度图像对的采集步骤

    Kinect v1 (Microsoft Kinect for Windows v1 )彩色和深度图像对的采集步骤 一.在ubuntu下尝试 1. 在虚拟机VWware Workstation 12. ...

  8. Kinect v2(Microsoft Kinect for Windows v2 )配置移动电源解决方案

    Kinect v2配置移动电源解决方案 Kinect v2如果用于移动机器人上(也可以是其他应用场景),为方便有效地展开后续工作,为其配置移动电源是十分必要的. 一.选择移动电源 Kinect v2原 ...

  9. 51Nod 最小公倍数之和V3

    这题公式真tm难推……为了这题费了我一个草稿本…… woc……在51Nod上码LaTeX码了两个多小时…… 一开始码完了前半段,刚码完后半段突然被51Nod吃了,重新码完后半段之后前半段又被吃了,吓得 ...

随机推荐

  1. Linux thread process and kernel mode and user mode page table

    Linux 中线程和进程切换的开销: Linux 操作系统层面的进程和线程的实现都是task_struct描述符. task_struct 包含成员变量:内核态stack.  这些都存在3-4G虚拟地 ...

  2. Connection: close和Connection: keep-alive有什么区别

    转自:https://www.cnblogs.com/TinyMing/p/4597136.html 看到有人问Connection: close和Connection: keep-alive有什么区 ...

  3. 通过元类创建一个Python类

    通过元类创建一个Python类 最开始学pytohn的时候我们这样定义类 class ClassName: pass 当熟悉了元类的概念之后我们还可以这样创建 ClassName = type(&qu ...

  4. liunx mysql数据库目录迁移

    1.查看mysql安装目录 从目录etc/my.cnf中查看安装目录 2.进入mysql目录,停止mysql服务 命令: cd usr/local/mysql 命令:service mysql sto ...

  5. char * const * (*a) (int b)

    char * const * (*a) (int b), 按照c++ program language的读法,从右往左读,* 读作pointer to 把(*a) (int b看作整体, (*a) ( ...

  6. OSGI.NET插件方式开发你的应用

    之前一直从事C# WEB开发.基本都是业务开发,性能优化. 体力活占比90%吧.模块真的很多很多,每次部署经常出先各种问题.发布经常加班. 今年开始接触winform 开发.发现C# 的事件  委托 ...

  7. 单例DCL模式

    单例模式可以保证系统中一个类只有一个实例.即一个类只有一个对象实例. 一般写法 public class DCLSingle { public static DCLSingle instance= n ...

  8. HTML的基本概念

    HTML语言是一种纯文本类.依靠解释的方式执行的标记语言,它是Internet上用于编写网页的主要语言.用HTML编写的超文本文件称为HTML文件,也是标准的纯文本文件. 当今构成网页文档主要是用HT ...

  9. Linux 基础学习1

    目录 Linux 基础学习 用户登录 终端 交互式接口 bash 修改ssh连接慢的步骤 命令提示符 显示提示符格式 命令 别名 命令格式 获取命令的帮助信息 man bash 快捷键 tab 键 引 ...

  10. 获取项目中所有URL--获取swagger上展示的接口信息

    有时我们需要接口的一些基本信息,比如接口请求路径,接口请求方式等,我们用这些信息来做判断,或者入库. 我在开发接口权限的时候就遇到了这个问题,之前写的接口很多,现在需要将这些接口信息存到数据库中, 用 ...