CodeForces 309B Context Advertising
洛谷题目页面传送门 & CodeForces题目页面传送门
给定一个\(n\)个单词的文本,第\(i\)个单词的长度为\(len_i\),要求截取文本的一段(单词必须取整的),分若干行放,同行单词用空格分隔,使得每行的长度不超过\(m\),最多放\(s\)行。求截取的单词数最多的截法。
\(n\in\left[1,10^6\right],\sum\limits_{i=1}^nlen_i\in\left[1,5\times10^6\right],ms\in\left[1,10^6\right]\)。
这道题想要AC还是很容易的。考虑枚举截取的第\(1\)个单词,然后计算往后最多能延申多少个单词,最后取个\(\max\)。重点在于如何计算往后最多能延申多少个单词,这个可以傻傻地贪心。先求出\(spl\)数组,表示从第\(i\)个单词开始最多能往后延申到第\(spl_i-1\)个单词放在一行。很显然,“是否能延申到第\(x\)个单词放在一行”具有单调性,于是\(spl\)数组可以\(\mathrm O(n\log n)\)配合前缀和二分求出。那么从第\(i\)个单词往后最多能延申的单词数就是\(\underbrace{spl_{spl_{spl_{\cdots_{i}}}}}_{s\text{次}spl\text{映射}}-i\)。这个又显然可以总共\(\mathrm O(n\log n)\)倍增求出。于是\(\mathrm O(n\log n)\)的复杂度是extremely easy的。
而我们是追求完美的OIer,这个复杂度能否达到\(\mathrm O(n)\)呢?带\(\log\)复杂度的地方有\(2\)个——求\(spl\)数组和\(s\)次\(spl\)映射,我们一个一个来看。
首先是求\(spl\)数组。不难发现,\(spl\)数组本身具有单调性,即\(spl_i\le spl_{i+1}\),那么我们可以从后往前two-pointers,求\(spl_i\)时,只需从\(spl_{i+1}\)到\(i\)从后往前试是否能延申到即可。其中边界是\(spl_{n+1}=n+1\)。这样所有单词均摊被试\(\mathrm O(n)\)次,时间复杂度就没有\(\log\)了。
接下来是映射。仍然利用\(spl\)数组的单调性,若在所有\(i\)和\(spl_i\)之间连一条边,若\(i=spl_i\)则不连边,那么一定会形成一个森林,而对\(i\)进行\(s\)次映射显然就等于节点\(i\)的\(\min(s,dep_i)\)辈祖先。我们对森林里的每一棵树进行DFS,同时维护一个递归栈\(stk\),那么\(\mathrm O(1)\)便可找到节点\(i\)的\(\min(s,dep_i)\)辈祖先,复杂度也变成整体\(\mathrm O(n)\)了。
下面贴代码:
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
const int N=1000000;
int n/*单词数*/,m/*每行最多能放的长度*/,s/*最多能放的行数*/;
string a[N+1];//单词们
int Sum[N+1];//前缀长度和(每个单词后面加上空格)
vector<int> son[N+2];int fa[N+2];//树,fa即spl数组
int stk[N+1],top;//递归栈
int ans[N+2];//从第i个单词开始最多能延伸的单词数
void dfs(int x){//对树DFS
stk[top++]=x;//将此节点入栈
ans[x]=stk[max(0,top-1-s)]-x;//O(1)找min(s,dep[i])辈祖先
for(int i=0;i<son[x].size();i++){
int y=son[x][i];
dfs(y);
}
top--;//出栈
}
int main(){
cin>>n>>s>>m;
for(int i=1;i<=n;i++)cin>>a[i],Sum[i]=Sum[i-1]+a[i].size()+1/*预处理前缀和*/;
fa[n+1]=n+1;//递推边界
for(int i=n;i;i--){//从后往前递推
fa[i]=fa[i+1];
while(Sum[fa[i]-1]-Sum[i-1]-1>m)fa[i]--;//从后往前试
if(fa[i]!=i)son[fa[i]].pb(i);//连边
}
// for(int i=1;i<=n+1;i++)cout<<fa[i]<<" ";puts("");
for(int i=1;i<=n+1;i++)if(fa[i]==i)top=0,dfs(i);//DFS每棵树
int mx=*max_element(ans+1,ans+n+2);//最大答案
for(int i=1;i<=n+1;i++)if(ans[i]==mx){
while(s--){//输出
for(int j=i;j<fa[i];j++)cout<<a[j]<<(j<fa[i]-1?" ":"\n");
i=fa[i];
}
return 0;
}
}
CodeForces 309B Context Advertising的更多相关文章
- Codeforces Round #415 (Div. 2)(A,暴力,B,贪心,排序)
A. Straight «A» time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...
- Codeforces Round#415 Div.2
A. Straight «A» 题面 Noora is a student of one famous high school. It's her final year in school - she ...
- 蓝牙inquiry流程之Advertising Report
setting 界面开始搜索的时候,通常也会同时进行le scan,这一点在inquiry流程之命令下发中已经讲述.此篇文章主要是分析一下对于controller 搜索到的广播包的处理.这里以Andr ...
- Javascript 的执行环境(execution context)和作用域(scope)及垃圾回收
执行环境有全局执行环境和函数执行环境之分,每次进入一个新执行环境,都会创建一个搜索变量和函数的作用域链.函数的局部环境不仅有权访问函数作用于中的变量,而且可以访问其外部环境,直到全局环境.全局执行环境 ...
- spring源码分析之<context:property-placeholder/>和<property-override/>
在一个spring xml配置文件中,NamespaceHandler是DefaultBeanDefinitionDocumentReader用来处理自定义命名空间的基础接口.其层次结构如下: < ...
- spring源码分析之context
重点类: 1.ApplicationContext是核心接口,它为一个应用提供了环境配置.当应用在运行时ApplicationContext是只读的,但你可以在该接口的实现中来支持reload功能. ...
- CSS——关于z-index及层叠上下文(stacking context)
以下内容根据CSS规范翻译. z-index 'z-index'Value: auto | <integer> | inheritInitial: autoApplies to: posi ...
- Tomcat启动报错org.springframework.web.context.ContextLoaderListener类配置错误——SHH框架
SHH框架工程,Tomcat启动报错org.springframework.web.context.ContextLoaderListener类配置错误 1.查看配置文件web.xml中是否配置.or ...
- mono for android Listview 里面按钮 view Button click 注册方法 并且传值给其他Activity 主要是context
需求:为Listview的Item里面的按钮Button添加一个事件,单击按钮时通过事件传值并跳转到新的页面. 环境:mono 效果: 布局代码 主布局 <?xml version=" ...
随机推荐
- 转: 【前端福利】用grunt搭建自动化的web前端开发环境-完整教程
http://blog.csdn.net/wangfupeng1988/article/details/46418203
- 2019徐州网络赛H :function (min25筛)
题意:f(i)=i的幂次之和. 求(N+1-i)*f(i)之和. 思路:可以推论得对于一个素数p^k,其贡献是ans=(N+1)[N/(P^k)]+P^k(1+2+3...N/(P^k)); 我们分两 ...
- Git创建与简单使用
一. 服务器端 创建空的仓库(以项目tm201为例) 1. git账户登录 2. 新建仓库目录 mkdir tm101.git && cd tm201.git 3. git初始化新的空 ...
- jenkins中 Slave使用Docker
原因就不说了,网上的自动化测试Docker教程太不靠谱,还是学学官网吧. 目的: 在现在各种虚拟化的大条件下,还在建立N个节点机器或节点机器搞N个并发,是不是太不方便了. 如果一个机器搞N个并发,在自 ...
- JanusGraph入门,schema及数据模型
5.Schema和数据建模 每个JanusGraph都有一个schema,该schema由edge labels,property keys,和vertex组成.JanusGraph schema可以 ...
- JZOJ3492数数&&GDOI2018超级异或绵羊——位&&类欧几里得
JZOJ3492 数数(count) 我们知道,一个等差数列可以用三个数A,B,N表示成如下形式: B+A,B+2A,B+3A⋯B+NA ztxz16想知道对于一个给定的等差数列,把其中每一项用二进 ...
- JavaScript的深克隆与浅克隆
JS数据类型分为两类: 基本类型(Number.Boolean.Undefined.Null.String.Symbol(ES6新加,此处不讨论))与引用类型(Object).原始类型存储的是对象的实 ...
- maven jar包冲突的发现与解决[工具篇]
本文是我的第177篇文章. 关于jar冲突排查解决的问题,相信很多小伙伴也都知道有一些,无非就是两类:命令 or 工具. 命令方式比如: mvn dependency:tree 工具方式比如: Mav ...
- 《Attack ML Models - 李宏毅》视频笔记(完结)
Attack ML Models - 李宏毅 https://www.bilibili.com/video/av47022853 Training的Loss:固定x,修改θ,使y0接近ytrue. N ...
- iptables man手册翻译
概要 iptables [-t table] -[AD] chain rule-specification [options]iptables [-t table] -I chain [rulenum ...