CodeForces 309B Context Advertising
洛谷题目页面传送门 & CodeForces题目页面传送门
给定一个\(n\)个单词的文本,第\(i\)个单词的长度为\(len_i\),要求截取文本的一段(单词必须取整的),分若干行放,同行单词用空格分隔,使得每行的长度不超过\(m\),最多放\(s\)行。求截取的单词数最多的截法。
\(n\in\left[1,10^6\right],\sum\limits_{i=1}^nlen_i\in\left[1,5\times10^6\right],ms\in\left[1,10^6\right]\)。
这道题想要AC还是很容易的。考虑枚举截取的第\(1\)个单词,然后计算往后最多能延申多少个单词,最后取个\(\max\)。重点在于如何计算往后最多能延申多少个单词,这个可以傻傻地贪心。先求出\(spl\)数组,表示从第\(i\)个单词开始最多能往后延申到第\(spl_i-1\)个单词放在一行。很显然,“是否能延申到第\(x\)个单词放在一行”具有单调性,于是\(spl\)数组可以\(\mathrm O(n\log n)\)配合前缀和二分求出。那么从第\(i\)个单词往后最多能延申的单词数就是\(\underbrace{spl_{spl_{spl_{\cdots_{i}}}}}_{s\text{次}spl\text{映射}}-i\)。这个又显然可以总共\(\mathrm O(n\log n)\)倍增求出。于是\(\mathrm O(n\log n)\)的复杂度是extremely easy的。
而我们是追求完美的OIer,这个复杂度能否达到\(\mathrm O(n)\)呢?带\(\log\)复杂度的地方有\(2\)个——求\(spl\)数组和\(s\)次\(spl\)映射,我们一个一个来看。
首先是求\(spl\)数组。不难发现,\(spl\)数组本身具有单调性,即\(spl_i\le spl_{i+1}\),那么我们可以从后往前two-pointers,求\(spl_i\)时,只需从\(spl_{i+1}\)到\(i\)从后往前试是否能延申到即可。其中边界是\(spl_{n+1}=n+1\)。这样所有单词均摊被试\(\mathrm O(n)\)次,时间复杂度就没有\(\log\)了。
接下来是映射。仍然利用\(spl\)数组的单调性,若在所有\(i\)和\(spl_i\)之间连一条边,若\(i=spl_i\)则不连边,那么一定会形成一个森林,而对\(i\)进行\(s\)次映射显然就等于节点\(i\)的\(\min(s,dep_i)\)辈祖先。我们对森林里的每一棵树进行DFS,同时维护一个递归栈\(stk\),那么\(\mathrm O(1)\)便可找到节点\(i\)的\(\min(s,dep_i)\)辈祖先,复杂度也变成整体\(\mathrm O(n)\)了。
下面贴代码:
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
const int N=1000000;
int n/*单词数*/,m/*每行最多能放的长度*/,s/*最多能放的行数*/;
string a[N+1];//单词们
int Sum[N+1];//前缀长度和(每个单词后面加上空格)
vector<int> son[N+2];int fa[N+2];//树,fa即spl数组
int stk[N+1],top;//递归栈
int ans[N+2];//从第i个单词开始最多能延伸的单词数
void dfs(int x){//对树DFS
stk[top++]=x;//将此节点入栈
ans[x]=stk[max(0,top-1-s)]-x;//O(1)找min(s,dep[i])辈祖先
for(int i=0;i<son[x].size();i++){
int y=son[x][i];
dfs(y);
}
top--;//出栈
}
int main(){
cin>>n>>s>>m;
for(int i=1;i<=n;i++)cin>>a[i],Sum[i]=Sum[i-1]+a[i].size()+1/*预处理前缀和*/;
fa[n+1]=n+1;//递推边界
for(int i=n;i;i--){//从后往前递推
fa[i]=fa[i+1];
while(Sum[fa[i]-1]-Sum[i-1]-1>m)fa[i]--;//从后往前试
if(fa[i]!=i)son[fa[i]].pb(i);//连边
}
// for(int i=1;i<=n+1;i++)cout<<fa[i]<<" ";puts("");
for(int i=1;i<=n+1;i++)if(fa[i]==i)top=0,dfs(i);//DFS每棵树
int mx=*max_element(ans+1,ans+n+2);//最大答案
for(int i=1;i<=n+1;i++)if(ans[i]==mx){
while(s--){//输出
for(int j=i;j<fa[i];j++)cout<<a[j]<<(j<fa[i]-1?" ":"\n");
i=fa[i];
}
return 0;
}
}
CodeForces 309B Context Advertising的更多相关文章
- Codeforces Round #415 (Div. 2)(A,暴力,B,贪心,排序)
A. Straight «A» time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...
- Codeforces Round#415 Div.2
A. Straight «A» 题面 Noora is a student of one famous high school. It's her final year in school - she ...
- 蓝牙inquiry流程之Advertising Report
setting 界面开始搜索的时候,通常也会同时进行le scan,这一点在inquiry流程之命令下发中已经讲述.此篇文章主要是分析一下对于controller 搜索到的广播包的处理.这里以Andr ...
- Javascript 的执行环境(execution context)和作用域(scope)及垃圾回收
执行环境有全局执行环境和函数执行环境之分,每次进入一个新执行环境,都会创建一个搜索变量和函数的作用域链.函数的局部环境不仅有权访问函数作用于中的变量,而且可以访问其外部环境,直到全局环境.全局执行环境 ...
- spring源码分析之<context:property-placeholder/>和<property-override/>
在一个spring xml配置文件中,NamespaceHandler是DefaultBeanDefinitionDocumentReader用来处理自定义命名空间的基础接口.其层次结构如下: < ...
- spring源码分析之context
重点类: 1.ApplicationContext是核心接口,它为一个应用提供了环境配置.当应用在运行时ApplicationContext是只读的,但你可以在该接口的实现中来支持reload功能. ...
- CSS——关于z-index及层叠上下文(stacking context)
以下内容根据CSS规范翻译. z-index 'z-index'Value: auto | <integer> | inheritInitial: autoApplies to: posi ...
- Tomcat启动报错org.springframework.web.context.ContextLoaderListener类配置错误——SHH框架
SHH框架工程,Tomcat启动报错org.springframework.web.context.ContextLoaderListener类配置错误 1.查看配置文件web.xml中是否配置.or ...
- mono for android Listview 里面按钮 view Button click 注册方法 并且传值给其他Activity 主要是context
需求:为Listview的Item里面的按钮Button添加一个事件,单击按钮时通过事件传值并跳转到新的页面. 环境:mono 效果: 布局代码 主布局 <?xml version=" ...
随机推荐
- telnet安装和使用教程
一.安装telnet 1.检测telnet-server的rpm包是否安装 [root@localhost ~]# rpm -qa telnet-server若无输入内容,则表示没有安装.出于安全考虑 ...
- pyinstaller安装及使用
pyinstaller使用 将.py文件转换成无需源码的.exe可执行文件 下载 1.打开cmd直接输入pip install pyinstaller即可下载 2.如第一种方法无法下载,打开pyins ...
- JSOI 2015 送礼物
[BZOJ4476] [JSOI2015]送礼物 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都 ...
- LA 4998简单加密游戏 —— 自相似性质&&不动点迭代
题意 输入正整数 $K_1$($K_1 \leq 50000$),找一个12为正整数 $K_2$(不能含有前导0)使得 ${K_1}^{K_2} \equiv K_2(mod \ {10}^{12}) ...
- Scrapy笔记09- 部署
Scrapy笔记09- 部署 本篇主要介绍两种部署爬虫的方案.如果仅仅在开发调试的时候在本地部署跑起来是很容易的,不过要是生产环境,爬虫任务量大,并且持续时间长,那么还是建议使用专业的部署方法.主要是 ...
- 管理node.js的nvm
我们坑同时在运行2个项目.而2个不同的项目所使用的node版本又不一样,或者是要用更新的node版本进行试验或学习.这种情况下,对于维护多个版本的node将会是一键非常麻烦的事情,而nvm就是为了解决 ...
- CF598: div3解题报告
CF598:div3解题报告 A: Payment Without Change 思路: 按题意模拟即可. 代码: #include<bits/stdc++.h> using namesp ...
- ElementUI_NodeJS环境搭建
ElementUI简介 我们学习VUE,知道它的核心思想式组件和数据驱动,但是每一个组件都需要自己编写模板,样式,添加事件,数据等是非常麻烦的, 所以饿了吗推出了基于VUE2.0的组件库,它的名称叫做 ...
- ESA2GJK1DH1K基础篇: 阿里云物联网平台: 测试MQTT客户端接收云平台的数据
前言 有时候想想可能直接连接现成的感觉比较方便吧! 这种东西考验的是你底子是否够好,是否有很强的学习能力 因为咱就是看文档,理解文档.用文档. 测这节会感觉:这是啥呀...下一节更精彩,但是必须看这节 ...
- django数据处理
目录 django积累 连接数据库: 模板 后台管理 功能扩展: 日志打印: django积累 连接数据库: 连接数据库 : 1.创建数据库 create database oa default ch ...