Ablation Study
We often come across 'ablation study' in machine learning papers, for example, in this paper with the original R-CNN, it has a section of ablation studies. But what does this means?
Well, we know that when we build a model, we usually have different components of the model. If we remove some component of the model, what's the effect on the model? This is a very coarse definition of ablation study - we want to see the contributions of some proposed components in the model by comparing the model including this component with that without this component.
In the above paper, in order to see the effect of fine-tuning of the CNN, the authors analyzed the performance of the model with the fine-tuning and the performance of it without the fine-tuning. This way, we can easily see the effect of the fine-tuning.
The following I copied from the answer of Jonathan Uesato on Quora, it explains very well:
- An LSTM has 4 gates: feature, input, output, forget. We might ask: are all 4 necessary? What if I remove one? Indeed, lots of experimentation has gone into LSTM variants, the GRU being a notable example (which is simpler).
- If certain tricks are used to get an algorithm to work, it’s useful to know whether the algorithm is robust to removing these tricks. For example, DeepMind’s original DQN paper reports using (1) only periodically updating the reference network and (2) using a replay buffer rather than updating online. It’s very useful for the research community to know that both these tricks are necessary, in order to build on top of these results.
- If an algorithm is a modification of a previous work, and has multiple differences, researchers want to know what the key difference is.
- Simpler is better (inductive prior towards simpler model classes). If you can get the same performance with two models, prefer the simpler one.
Ablation Study的更多相关文章
- 深度学习研究理解5:Visualizing and Understanding Convolutional Networks(转)
Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主 ...
- 《DSOD:Learning Deeply Supervised Object Detectors from Scratch》翻译
原文地址:https://arxiv.org/pdf/1708.01241 DSOD:从零开始学习深度有监督的目标检测器 Abstract摘要: 我们提出了深入的监督对象检测器(DSOD),一个框架, ...
- 论文笔记(2):Deep Crisp Boundaries: From Boundaries to Higher-level Tasks
---------------------------------------------------------------------------------------------------- ...
- SCNN车道线检测--(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding(论文解读)
Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artific ...
- [Arxiv1706] Few-Example Object Detection with Model Communication 论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p. ...
- [论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks
概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexN ...
- (转)The Evolved Transformer - Enhancing Transformer with Neural Architecture Search
The Evolved Transformer - Enhancing Transformer with Neural Architecture Search 2019-03-26 19:14:33 ...
- Dual Attention Network for Scene Segmentation
Dual Attention Network for Scene Segmentation 原始文档 https://www.yuque.com/lart/papers/onk4sn 在本文中,我们通 ...
- 【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言 ...
随机推荐
- 判断cms-暴库-后台查找-密码破解
1.判断网站CMS类型 判断目标 使用工具: 脚本语言 wvs 御剑 domain明小子 操作系统 wwwscan 啊d pangolin(穿山甲) 搭建平台 站长工具 netpark ...
- LCD编程_画点线圆
上篇博客中进行了lcd的简单测试,这篇博客将进行更加复杂的测试——画点.画线.画圆.画线和画圆是在画点的基础上实现的,因此本篇博客重点实现画点操作. 先抛出这样的一个问题,已知: (x,y)的坐标: ...
- 201871010133-赵永军《面向对象程序设计(java)》第二周学习总结
201871010133-赵永军<面向对象程序设计(java)>第二周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这 ...
- CentOS7 下使用 Firewall防火墙系统封禁允许IP和端口的访问 端口转发 IP转发方法
CENTOS7的防火墙系统默认已经从iptable改成了firewall,使用方法也有所不同,下面是详细介绍 一.管理端口 列出 dmz 级别的被允许的进入端口 # firewall-cmd --zo ...
- 10-cmake语法-CMakeParseArguments
include(CMakeParseArguments) 是为了使用 cmake_parse_arguments(),看样子是用来解析输入参数的. 给出参考: https://cmake.org/pi ...
- 6.使用Go向Consul注册的基本方法
编写注册函数 package utils import ( consulapi "github.com/hashicorp/consul/api" "log" ...
- docker的简单操作和端口映射
一:简介 Docker镜像 在Docker中容器是基于镜像启动的 镜像是启动容器的核心 镜像采用分层设计,最顶层为读写层 使用快照COW技术,确保底层不丢失 通过ifconfig(ip a)来查看d ...
- Django 1.11 bootstrap样式文件无法加载问题解决
先吐槽一波,多看官方教程,多找对应版本解决方法,多思考!... 在调试模式下面,打开页面无法加载bootstrap.min.css样式,解决思路如下: 查看settings文件INSTALL_APP配 ...
- 模型区分度衡量指标-KS值
1.KS值--学习器将正例和反例分开的能力,确定最好的“截断点” KS曲线和ROC曲线都用到了TPR,FPR.KS曲线是把TPR和FPR都作为纵坐标,而样本数作为横坐标.但是AUC只评价了模型的整体训 ...
- 关于JavaSE程序的小总结(不分先后顺序 后续继续补充)
统计字符串中某个字符串出现的次数 package com.jiang.demo01; public class Demo01 { public static void main(String[] ar ...