We often come across 'ablation study' in machine learning papers, for example, in this paper with the original R-CNN, it has a section of ablation studies. But what does this means?

Well, we know that when we build a model, we usually have different components of the model. If we remove some component of the model, what's the effect on the model? This is a very coarse definition of ablation study - we want to see the contributions of some proposed components in the model by comparing the model including this component with that without this component.

In the above paper, in order to see the effect of fine-tuning of the CNN, the authors analyzed the performance of the model with the fine-tuning and the performance of it without the fine-tuning. This way, we can easily see the effect of the fine-tuning.

The following I copied from the answer of Jonathan Uesato on Quora, it explains very well:

An ablation study typically refers to removing some “feature” of the model or algorithm and seeing how that affects performance.
Examples:
    • An LSTM has 4 gates: feature, input, output, forget. We might ask: are all 4 necessary? What if I remove one? Indeed, lots of experimentation has gone into LSTM variants, the GRU being a notable example (which is simpler).
    • If certain tricks are used to get an algorithm to work, it’s useful to know whether the algorithm is robust to removing these tricks. For example, DeepMind’s original DQN paper reports using (1) only periodically updating the reference network and (2) using a replay buffer rather than updating online. It’s very useful for the research community to know that both these tricks are necessary, in order to build on top of these results.
    • If an algorithm is a modification of a previous work, and has multiple differences, researchers want to know what the key difference is.
    • Simpler is better (inductive prior towards simpler model classes). If you can get the same performance with two models, prefer the simpler one.

Ablation Study的更多相关文章

  1. 深度学习研究理解5:Visualizing and Understanding Convolutional Networks(转)

    Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主 ...

  2. 《DSOD:Learning Deeply Supervised Object Detectors from Scratch》翻译

    原文地址:https://arxiv.org/pdf/1708.01241 DSOD:从零开始学习深度有监督的目标检测器 Abstract摘要: 我们提出了深入的监督对象检测器(DSOD),一个框架, ...

  3. 论文笔记(2):Deep Crisp Boundaries: From Boundaries to Higher-level Tasks

    ---------------------------------------------------------------------------------------------------- ...

  4. SCNN车道线检测--(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding(论文解读)

    Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artific ...

  5. [Arxiv1706] Few-Example Object Detection with Model Communication 论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p. ...

  6. [论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks

    概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexN ...

  7. (转)The Evolved Transformer - Enhancing Transformer with Neural Architecture Search

    The Evolved Transformer - Enhancing Transformer with Neural Architecture Search 2019-03-26 19:14:33 ...

  8. Dual Attention Network for Scene Segmentation

    Dual Attention Network for Scene Segmentation 原始文档 https://www.yuque.com/lart/papers/onk4sn 在本文中,我们通 ...

  9. 【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练

    BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言 ...

随机推荐

  1. 配置管理-git研究(版本管理)

    1. 安装git2.7 git2.7具体安装步骤如下: [root@host1 ~]# yum install curl-devel expat-devel gettext-devel openssl ...

  2. 前端(5)之jQuery

    前端(5)之jQuery jQuery介绍 1.jQuery是一个轻量级的,兼容多浏览器的JavaScript库. 2.jQuery使用户能够更方便地处理HTML Document.Events.实现 ...

  3. 实验十四 团队项目评审&课程学习总结

    项目 内容 这个作业属于哪个课程 2016计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十四 团队项目评审&课程学习总结 团队名称 快活帮 作业学习目标 (1)掌握软 ...

  4. Comet OJ 夏季欢乐赛 烤面包片

    烤面包片 https://cometoj.com/contest/59/problem/C?problem_id=2698 题目描述 鸡尾酒最喜欢吃东北的烤面包片了.每次到东北地区的区域赛或者是秦皇岛 ...

  5. [codevs3044]矩形面积求并

    题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Description 可能有多组数据,读到n=0为止(不超过15组) 每组数据第一行 ...

  6. 第05组 Beta冲刺(4/4)

    第05组 Beta冲刺(4/4) 队名:天码行空 组长博客连接 作业博客连接 团队燃尽图(共享): GitHub当日代码/文档签入记录展示(共享): 组员情况: 组员1:卢欢(组长) 过去两天完成了哪 ...

  7. Nginx on Docker 配置

    docker run -d -p 8082:8082 --name two-nginx -v ~/workplace/nginx/html:/usr/share/nginx/html -v ~/wor ...

  8. vue : 无法加载文件 C:\Users\xxx\AppData\Roaming\npm\vue.ps1

    最近因为电脑太卡,小颖把电脑重装了,重装后再执行 npm install -g @vue/cli 时可能是网络问题,一直不能成功,小颖就把npm指向了淘宝镜像: npm install -g cnpm ...

  9. 优先队列优化的 Huffman树 建立

    如果用vector实现,在运行时遍历寻找最小的两个节点,时间复杂度为O(N^2) 但是我们可以用priority_queue优化,达到O(N logN)的时间复杂度 需要注意的是priority_qu ...

  10. .net项目发布到iis

    参考: https://www.cnblogs.com/teyigou/p/8125379.html https://www.cnblogs.com/kissfu/p/6399472.html htt ...