We often come across 'ablation study' in machine learning papers, for example, in this paper with the original R-CNN, it has a section of ablation studies. But what does this means?

Well, we know that when we build a model, we usually have different components of the model. If we remove some component of the model, what's the effect on the model? This is a very coarse definition of ablation study - we want to see the contributions of some proposed components in the model by comparing the model including this component with that without this component.

In the above paper, in order to see the effect of fine-tuning of the CNN, the authors analyzed the performance of the model with the fine-tuning and the performance of it without the fine-tuning. This way, we can easily see the effect of the fine-tuning.

The following I copied from the answer of Jonathan Uesato on Quora, it explains very well:

An ablation study typically refers to removing some “feature” of the model or algorithm and seeing how that affects performance.
Examples:
    • An LSTM has 4 gates: feature, input, output, forget. We might ask: are all 4 necessary? What if I remove one? Indeed, lots of experimentation has gone into LSTM variants, the GRU being a notable example (which is simpler).
    • If certain tricks are used to get an algorithm to work, it’s useful to know whether the algorithm is robust to removing these tricks. For example, DeepMind’s original DQN paper reports using (1) only periodically updating the reference network and (2) using a replay buffer rather than updating online. It’s very useful for the research community to know that both these tricks are necessary, in order to build on top of these results.
    • If an algorithm is a modification of a previous work, and has multiple differences, researchers want to know what the key difference is.
    • Simpler is better (inductive prior towards simpler model classes). If you can get the same performance with two models, prefer the simpler one.

Ablation Study的更多相关文章

  1. 深度学习研究理解5:Visualizing and Understanding Convolutional Networks(转)

    Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主 ...

  2. 《DSOD:Learning Deeply Supervised Object Detectors from Scratch》翻译

    原文地址:https://arxiv.org/pdf/1708.01241 DSOD:从零开始学习深度有监督的目标检测器 Abstract摘要: 我们提出了深入的监督对象检测器(DSOD),一个框架, ...

  3. 论文笔记(2):Deep Crisp Boundaries: From Boundaries to Higher-level Tasks

    ---------------------------------------------------------------------------------------------------- ...

  4. SCNN车道线检测--(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding(论文解读)

    Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artific ...

  5. [Arxiv1706] Few-Example Object Detection with Model Communication 论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p. ...

  6. [论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks

    概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexN ...

  7. (转)The Evolved Transformer - Enhancing Transformer with Neural Architecture Search

    The Evolved Transformer - Enhancing Transformer with Neural Architecture Search 2019-03-26 19:14:33 ...

  8. Dual Attention Network for Scene Segmentation

    Dual Attention Network for Scene Segmentation 原始文档 https://www.yuque.com/lart/papers/onk4sn 在本文中,我们通 ...

  9. 【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练

    BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言 ...

随机推荐

  1. Nginx Rewrite相关功能-ngx_http_rewrite_module模块指令

    Nginx Rewrite相关功能-ngx_http_rewrite_module模块指令 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  2. Compute Shader基础

    ComputeShader:     GPGPU:General Purpose GPU Programming,GPU通用计算,利用GPU的并行特性.大量并行无序数据的少分支逻辑适合GPGPU.平台 ...

  3. linux之shell脚本学习(一)

    #!/bin/bash echo 'hello' your_name='longxiong' echo $your_name echo ${your_name} for i in `ls /opt`; ...

  4. USB设备驱动程序1

    目的:USB鼠标用作按键,左键相当于字母L,右键相当于字母S,中键相当于Enter.如何来实现?用到输入子系统:1)分配input_dev2)设置3)注册4)硬件相关操作对于USB鼠标来说,硬件操作应 ...

  5. LocalDateTime的一些用法

    包括获取当前时间,指定特定时间.进行时间的加减等 LocalDateTime localDateTime3 = LocalDateTime.now(); LocalDate.now(); LocalT ...

  6. destoon聚合搜索页面模板

    最近学习大型站点SEO策略,谈到关于大站需要做聚合页面tags,所以根据destoon系统自己做了一个聚合页面,在此分享给吾爱的朋友,一起学习参考! 模板演示站点:http://zhimo.yuanz ...

  7. 去掉VSS控制

    1:删除.vssscc.vssver.scc .项目名.csproj.vspscc文件 2:.csproj文件删除以下内容   SccProjectName = "SAK"   S ...

  8. python--线程知识详解

    Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. 1.1.threading模块 threading模块建立在_thread模块之上.thread模块以低级=原始的方式来处理 ...

  9. Layui Iframe页面间 方法的相互调用

    就是普通的iframe之间方法的调用,只是注意一下src就像 var childWindow = $(window.parent.document).find("iframe[src='/A ...

  10. ESA2GJK1DH1K升级篇: 关于升级篇数据校验

    前言 鉴于大家都希望升级的时候加入数据校验,所以就满足大家的要求. 其实我也希望自己做的足够的稳定可靠,让大家使用起来放心. 上一节测试了一节加入校验以后的操作方式,这节来详细的说一下校验部分的代码. ...