[LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和
In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum.
Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.
Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.
Example:
Input: [1,2,1,2,6,7,5,1], 2
Output: [0, 3, 5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.
Note:
nums.lengthwill be between 1 and 20000.nums[i]will be between 1 and 65535.kwill be between 1 and floor(nums.length / 3).
给一个由正数组成的数组,找三个长度为k的不重叠的子数组,使得三个子数组的数字之和最大。
解法: DP,思路类似于123. Best Time to Buy and Sell Stock III,先分别从左和右两个方向求出每一个位置i之前的长度为k的元素和最大值,这样做的好处是之后想要得到某一位置的最大和时能马上知道。然后在用一个循环找出三段的最大和。
Java:
class Solution {
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
int n = nums.length, maxsum = 0;
int[] sum = new int[n+1], posLeft = new int[n], posRight = new int[n], ans = new int[3];
for (int i = 0; i < n; i++) sum[i+1] = sum[i]+nums[i];
// DP for starting index of the left max sum interval
for (int i = k, tot = sum[k]-sum[0]; i < n; i++) {
if (sum[i+1]-sum[i+1-k] > tot) {
posLeft[i] = i+1-k;
tot = sum[i+1]-sum[i+1-k];
}
else
posLeft[i] = posLeft[i-1];
}
// DP for starting index of the right max sum interval
// caution: the condition is ">= tot" for right interval, and "> tot" for left interval
posRight[n-k] = n-k;
for (int i = n-k-1, tot = sum[n]-sum[n-k]; i >= 0; i--) {
if (sum[i+k]-sum[i] >= tot) {
posRight[i] = i;
tot = sum[i+k]-sum[i];
}
else
posRight[i] = posRight[i+1];
}
// test all possible middle interval
for (int i = k; i <= n-2*k; i++) {
int l = posLeft[i-1], r = posRight[i+k];
int tot = (sum[i+k]-sum[i]) + (sum[l+k]-sum[l]) + (sum[r+k]-sum[r]);
if (tot > maxsum) {
maxsum = tot;
ans[0] = l; ans[1] = i; ans[2] = r;
}
}
return ans;
}
}
Python:
class Solution(object):
def maxSumOfThreeSubarrays(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
n = len(nums)
accu = [0]
for num in nums:
accu.append(accu[-1]+num) left_pos = [0] * n
total = accu[k]-accu[0]
for i in xrange(k, n):
if accu[i+1]-accu[i+1-k] > total:
left_pos[i] = i+1-k
total = accu[i+1]-accu[i+1-k]
else:
left_pos[i] = left_pos[i-1] right_pos = [n-k] * n
total = accu[n]-accu[n-k]
for i in reversed(xrange(n-k)):
if accu[i+k]-accu[i] > total:
right_pos[i] = i;
total = accu[i+k]-accu[i]
else:
right_pos[i] = right_pos[i+1] result, max_sum = [], 0
for i in xrange(k, n-2*k+1):
left, right = left_pos[i-1], right_pos[i+k]
total = (accu[i+k]-accu[i]) + \
(accu[left+k]-accu[left]) + \
(accu[right+k]-accu[right])
if total > max_sum:
max_sum = total
result = [left, i, right]
return result
C++:
class Solution {
public:
vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
int n = nums.size(), maxsum = 0;
vector<int> sum = {0}, posLeft(n, 0), posRight(n, n-k), ans(3, 0);
for (int i:nums) sum.push_back(sum.back()+i);
// DP for starting index of the left max sum interval
for (int i = k, tot = sum[k]-sum[0]; i < n; i++) {
if (sum[i+1]-sum[i+1-k] > tot) {
posLeft[i] = i+1-k;
tot = sum[i+1]-sum[i+1-k];
}
else
posLeft[i] = posLeft[i-1];
}
// DP for starting index of the right max sum interval
// caution: the condition is ">= tot" for right interval, and "> tot" for left interval
for (int i = n-k-1, tot = sum[n]-sum[n-k]; i >= 0; i--) {
if (sum[i+k]-sum[i] >= tot) {
posRight[i] = i;
tot = sum[i+k]-sum[i];
}
else
posRight[i] = posRight[i+1];
}
// test all possible middle interval
for (int i = k; i <= n-2*k; i++) {
int l = posLeft[i-1], r = posRight[i+k];
int tot = (sum[i+k]-sum[i]) + (sum[l+k]-sum[l]) + (sum[r+k]-sum[r]);
if (tot > maxsum) {
maxsum = tot;
ans = {l, i, r};
}
}
return ans;
}
};
类似题目:
[LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III
All LeetCode Questions List 题目汇总
[LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和的更多相关文章
- [leetcode]689. Maximum Sum of 3 Non-Overlapping Subarrays三个非重叠子数组的最大和
In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...
- [LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和
In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...
- Java实现 LeetCode 689 三个无重叠子数组的最大和(换方向筛选)
689. 三个无重叠子数组的最大和 给定数组 nums 由正整数组成,找到三个互不重叠的子数组的最大和. 每个子数组的长度为k,我们要使这3*k个项的和最大化. 返回每个区间起始索引的列表(索引从 0 ...
- [Swift]LeetCode689. 三个无重叠子数组的最大和 | Maximum Sum of 3 Non-Overlapping Subarrays
In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...
- [Swift]LeetCode1031. 两个非重叠子数组的最大和 | Maximum Sum of Two Non-Overlapping Subarrays
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping ...
- LeetCode 689. Maximum Sum of 3 Non-Overlapping Subarrays
原题链接在这里:https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/ 题目: In a given arr ...
- [LeetCode] 918. Maximum Sum Circular Subarray 环形子数组的最大和
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...
- leetcode面试题42. 连续子数组的最大和
总结一道leetcode上的高频题,反反复复遇到了好多次,特别适合作为一道动态规划入门题,本文将详细的从读题开始,介绍解题思路. 题目描述示例动态规划分析代码结果 题目 面试题42. 连续子数 ...
- 【LeetCode】689. Maximum Sum of 3 Non-Overlapping Subarrays 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/maximum- ...
随机推荐
- Hikari java数据库连接池实战
环境InterlliJ2016.3 MySQL5.7.12 pom依赖: <dependency> <groupId>com.zaxxer</groupId> & ...
- 微信小程序~事件绑定和冒泡
[1]事件绑定和冒泡 事件绑定的写法同组件的属性,以 key.value 的形式. key 以bind或catch开头,然后跟上事件的类型,如bindtap.catchtouchstart.自基础库版 ...
- Centos7-网卡配置
目标计划:熟悉Linux网卡 1.修改网卡名称,替换自动生成的网卡名 2.新建网卡配置文件与新增网卡的关系 3.网卡bond模式配置,team模式 4.NetworkManager-nmcli管理网络 ...
- Proxmox初步了解
Proxmox不分主从,所有节点同步信息 创建集群 pvecm(可通过web界面创建.添加至集群) pvecm create cluster01 pvecm status 添加节点 pvecm add ...
- 项目Alpha冲刺(团队) -- 测试
项目Alpha冲刺(团队) --测试 1.团队信息 团队名 :男上加男 成员信息 : 队员学号 队员姓名 个人博客地址 备注 221600427 Alicesft https://www.cnblog ...
- python的zip()函数
zip() 函数用于将可迭代对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象. 如果各个可迭代对象的元素个数不一致,则返回的对象长度与最短的可迭代对象相同. 利用 * 号 ...
- FFT/NTT [51Nod 1028] 大数乘法 V2
题目链接:51Nod 传送门 没压位,效率会低一点 1.FFT #include <cstdio> #include <cstring> #include <algori ...
- OLED液晶屏幕(1)OLED液晶屏幕ssd1306驱动芯片 arduino运行 ESP8266-07可以 12f不可以
OLED屏幕有各种形状和尺寸,但目前有两种非常受欢迎的屏幕尺寸. 1)0.96“ 2)1.3“ 他们也有2种常见的颜色 1)蓝色 2)白色 驱动OLED的芯片常用的有两种.这两种芯片有许多非常相似的设 ...
- VSFTPD匿名用户上传文件
1.安装vsftpd yum -y install vsftpd yum -y install ftp 客户端 2.编写配置文件 vim /etc/vsftpd/vsftpd.conf anonymo ...
- 微信小程序底部导航栏部署
在微信小程序开发app.json(app.json它是定义全局页面) 只是用来部署微信底部的图标,最多不能大于五个 "tabBar":{ "selectedColor&q ...