JetPack(Jetson SDK)是一个按需的一体化软件包,捆绑了NVIDIA®Jetson嵌入式平台的开发人员软件。JetPack 3.0包括对Jetson TX2 , Jetson TX1和Jetson TK1开发套件的最新L4T BSP软件包的支持。 使用最新的BSP( 用于Jetson TX1的L4T 27.1,用于Jetson TX1的 L4T 24.2.1和用于Jetson TK1的L4T 21.5 )自动刷新您的Jetson开发套件,并安装构建和配置Jetson嵌入式平台应用所需的最新软件工具。 此软件包包含用于主机(Ubuntu)和目标(Jetson
TX2,TX1和TK1)平台的CUDA工具包、最新的NVIDIA开发工具(Tegra Graphics Debugger 2.4,Tegra System Profiler 3.7和PerfKit 4.5.1)、VisionWorks 1.6,cuDNN v5 .1、MM API v27.1、OpenCV 2.4.13和GameWorks OpenGL示例2.11a,支持OpenGL 4.5和OpenGL ES 3.2。

发布亮点:

支持Jetson TX2开发工具包,Jetson TX1开发工具包和Jetson TK1开发工具包 。

使用附带的Linux for Tegra r27.1映像设置NVIDIA Jetson TX2开发工具包。

使用附带的Linux for Tegra r24.2.1映像设置NVIDIA Jetson TX1开发工具包。

使用附带的Linux for Tegra r21.5映像设置NVIDIA Jetson TK1开发工具包。

VisionWorks
1.6

cuDNN v5.1

CUDA 8.0(8.0.64)用于Ubuntu 14.04 x86 64位工具包,支持TX2交叉开发

CUDA 8.0(8.0.64)L4T工具包r27.1

CUDA 8.0(8.0.34)用于Ubuntu 14.04 x86 64位工具包,支持TX1交叉开发

CUDA 8.0(8.0.34)L4T工具包r24.2.1

CUDA 6.5(6.5.53)具有TK1交叉开发支持的Ubuntu 14.04 x86 64位工具包

CUDA 6.5(6.5.53)用于L4T r21.5的工具包

Tegra系统概要分析3.7

各种错误修复和性能增强

Tegra图形调试器2.4

稳定性改进

各种用户界面错误修复

OpenCV4Tegra
2.4.13

多媒体API v27.1

TensorRT 1.0

JetPack 3.0中的主要功能

TensorRT 1.0

TensorRT是用于图像分类,分割和对象检测神经网络的高性能深度学习推理运行时。 它加快了深度学习推断,以及减少卷积和deconv神经网络的运行时内存占用。

cuDNN 5.1

CUDA深度神经网络库为所有深度学习框架提供高性能原语。 它包括对卷积,激活函数和张量变换的支持。

VisionWorks 1.6

VisionWorks是用于计算机视觉(CV)和图像处理的软件开发包。 它包括VPI(视觉编程接口),一组优化的CV原语供CUDA开发人员使用。 NVX库允许直接访问VPI,OVX库允许通过OpenVX框架间接访问VPI。

CUDA 8

CUDA工具包为构建GPU加速应用程序的C和C ++开发人员提供了一个全面的开发环境。 该工具包包括用于NVIDIA GPU的编译器,数学库以及用于调试和优化应用程序性能的工具。

多媒体API

Jetson Multimedia API包提供了用于灵活应用开发的低级API。

摄像机应用程序API:libargus为摄像机应用程序提供了低级帧同步API,每帧摄像机参数控制,多个(包括同步)摄像机支持和EGL流输出。 RAW输出需要ISP的CSI摄像机可以与libargus或GStreamer插件一起使用。 在任一种情况下,都使用V4L2介质控制器传感器驱动程序API。

传感器驱动程序API:V4L2 API支持视频解码,编码,格式转换和缩放功能。 V4L2用于编码打开了许多功能,如比特率控制,质量预设,低延迟编码,时间权衡,运动矢量映射等。

开发工具

Tegra System Profiler 3.7是一个系统跟踪和多核CPU PC采样分析器,可提供捕获的分析数据的交互式视图,有助于提高整体应用程序性能。

Tegra图形调试器2.4是一个控制台级工具,允许开发人员调试和分析OpenGL ES 2.0,3.0,3.1和3.2,OpenGL 4.3,4.4和4.5,使开发人员能够充分利用Jetson嵌入式平台。

GPU世界也同样更新了JetPack下载器:

下载器地址:

http://mirror.gpuworld.cn:666/jetpack_l4t/JetPack-linux-x64.run
这是重新打包的NV的原始下载器,此新下载器将从我们的云下载数据,而不是墙外的NV服务器。

用户只要从上面的地址下载run文件,直接安装即可看到明显的安装速度变化。

注意:如果以前安装过但没有成功的话,请将原始下载器产生的_installer目录删除,然后再重新安装。

 

【ARM-Linux开发】【CUDA开发】【深度学习与神经网络】Jetson Tx2安装相关之三的更多相关文章

  1. CUDA上深度学习模型量化的自动化优化

    CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数 ...

  2. TVM 优化 ARM GPU 上的移动深度学习

    TVM 优化 ARM GPU 上的移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源 ...

  3. TVM在ARM GPU上优化移动深度学习

    TVM在ARM GPU上优化移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与在台式机平台上所做的类似,在移动设备中使用GPU可以提高推理速度和能源效率.但是,大 ...

  4. linux(Ubuntu)下机器学习/深度学习环境配置

    为了开发环境纯净,应该首先创建虚拟环境 mkvirtualenv -p python3 虚拟环境名称 如,mkvirtualenv -p python3 ai 但是有的童鞋会卡在这一步,会报一个这样的 ...

  5. [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2

    之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础im ...

  6. 针对深度学习(神经网络)的AI框架调研

    针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU). ...

  7. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  8. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...

  9. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...

随机推荐

  1. 树莓派上 Docker 的安装和使用

    Docker 是一个开源的应用容器引擎,可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不 ...

  2. 分析和研究Monkey Log文件

    Log 在Android中的地位非常重要,要是作为一个android程序员不能过分析log这关,算是android没有入门吧 . 下面我们就来说说如何处理log文件 . 什么时候会有Log文件的产生 ...

  3. onreadystatechange和onload区别分析

    onreadystatechange和onload区别分析   script加载 IE的script 元素只支持onreadystatechange事件,不支持onload事件. FireFox,Op ...

  4. select2实现多选 并且回显

    html代码:<select name="ruleId" id="ruleId" class="required" onchange= ...

  5. Switch ……case语句

    Switch(变量){ case 1: 如果变量和1的值相同,执行该处代码 break; case 2: 如果变量和2的值相同,执行该处代码 break; case 3: 如果变量和3的值相同,执行该 ...

  6. REdis之maxmemory解读

    redis.conf中的maxmemory定义REdis可用最大物理内存,有多种书写方式,以下均为合法: maxmemory 1048576 maxmemory 1048576B maxmemory  ...

  7. dropbox icloud and nustore

    dropbox icloud and nustore 这里只是写一下自己的感受. 曾经搜索无数遍, 想着用哪个比较好, 想来比较一下, 还不如自己直接用用看吧. 于是同时用了很久的 dropbx 和 ...

  8. mysql sin() 函数

    mysql> ); +---------------------+ | sin(PI()/) | +---------------------+ | 0.49999999999999994 | ...

  9. 利用python做矩阵的简单运算(行列式、特征值、特征向量等的求解)

    import numpy as np lis = np.mat([[1,2,3],[3,4,5],[4,5,6]]) print(np.linalg.inv(lis)) # 求矩阵的逆矩阵 [[-1. ...

  10. Jmeter(四十三)_性能测试分配堆内存

    内存泄漏.内存溢出是什么? 内存泄露是指你的应用使用资源之后没有及时释放,导致应用内存中持有了不需要的资源,这是一种状态描述: 内存溢出是指你应用的内存已经不能满足正常使用了,堆栈已经达到系统设置的最 ...