下面各题解法可能存在一些时间和空间复杂度问题,有些没有做到最优化,还请谅解!!!

1、用for循环实现10的阶乘。

    //使用for循环方法解答
var num = 10
var sum = 1;
var str = '';
for(var i=10;i>=1;i--){
sum *= i;
if(i == 1){
str += i;
}else{
str += i+'*';
}
}
console.log(num+'! = '+str+' = '+sum);

2、打印九九乘法表

    for(var i=1;i<=9;i++){
var str = '';
for(var j=1;j<=i;j++){
str += i+'*'+j+'='+i*j+'\t';
}
console.log(str);
}

3、有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?【该处时间复杂度相对较大,代码仅供参考】

    var n =10;
var str = '';
for(var i=1;i<=n;i++){
for(var j=1;j<=n;j++){
if(j != i){
for(var k=1;k<=n;k++){
if(k != i && k != j){
str = str+i+j+k+'\t';
}
}
}
}
}
console.log(str);

4、判断101-200之间有多少个素数,并输出所有素数(只能被1和它本身整除的自然数为素数)
// console.log(Math.sqrt(101));  //101开平方

    var str = '';
var count = 0;
for(var i=101;i<=200;i++){
var flag = true;
for(var j=2;j<=Math.sqrt(i);j++){
if(i%j == 0){
//不是质数
var flag = false;
break; //节省运算时间,后面循环不需要再执行了
} }
if(flag){
str += i+'\t';
count++;
}
}
console.log('101~200之间有'+count+'个素数\n分别为:\n'+str);

5、打印出所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位数字立方和等于该数本身。例如:153是一个“水仙花数”,因为153=1的三次方+5的三次方+3的三次方
// console.log(Math.pow(10,3));   //计算10的三次方

    for(var i=100;i<1000;i++){
var hundred = parseInt(i/100);
var ten = parseInt((i-hundred*100)/10);
var unit = i-hundred*100-ten*10;
// console.log('................');
var sum = Math.pow(hundred,3)+Math.pow(ten,3)+Math.pow(unit,3);
if(sum == i){
console.log(i);
}
}

6、将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。

    var num = 90;
var str = '';
for(var i=2;i<=num;i++){
// console.log(i);
if(num == i){
str += i;
}
while(num != i){
if(isPrime(i)){
// console.log(i);
if (num%i == 0) {
num /= i;
str += i+'*';
}else{
break;
}
}else{
break;
}
}
}
console.log(str); //判断一个数是否为素数
// console.log(isPrime(4)); 测试isPrime()函数
function isPrime(n){
var flag = true;
for(var i=2;i<=Math.sqrt(n);i++){
if(n%i == 0){
flag = false;
}
}
return flag;
}

7、求任意两个正整数的最大公约数和(GCD)和最小公倍数(LCM)

    /*
辗转相除法的算法为:首先将 m除以 n(m>n)得余数 r,再用余数 r 去除原来的除数,
得新的余数,重复此过程直到余数为 0时停止,此时的除数就是m 和 n的最大公约数。
求 m和 n的最小公倍数: m和 n的积除以(m和 n 的最大公约数)。
*/
function gcdLcm(m,n){
var mn = m*n;
var r = m%n;
while(r != 0){
r = m%n;
m = n;
n = r;
}
console.log('最大公约数为:'+m+'\t最小公倍数为:'+mn/m);
}
gcdLcm(100,40)

8、求1000以内的完全数(若一个自然数,恰好与除去它本身以外的一切因数的和相等,这种数叫做完全数。)

    // var sum = 0;
for(var i=1;i<=1000;i++){
var sum = 0;
for(var j=1;j<=i;j++){
if(i%j == 0 && i!=j){
sum += j;
// console.log(sum);
}
}
if(sum == i){
console.log(i);
}
}

js的一些较为常见的语句算法题的更多相关文章

  1. JS中几种常见的数组算法(前端面试必看)

    JS中几种常见的数组算法 1.将稀疏数组变成不稀疏数组 /** * 稀疏数组 变为 不稀疏数组 * @params array arr 稀疏数组 * @return array 不稀疏的数组 */ f ...

  2. js中字符和数组一些基本算法题

    最近在刷 fcc的题,跟升级打怪一样,一关一关的过,还挺吸引我的.今天抽时间把 Basic Algorithm Scritping  这部分题做了,根据一些提示,还是比较简单的.有些题的处理方式 方法 ...

  3. 19道常见的JS面试算法题

    最近秋招也做了多多少少的面试题,发现除了基础知识外,算法还是挺重要的.特意整理了一些常见的算法题,添加了自己的理解并实现. 除此之外,建议大家还可以刷刷<剑指offer>.此外,左神在牛客 ...

  4. 常见排序算法题(java版)

    常见排序算法题(java版) //插入排序:   package org.rut.util.algorithm.support;   import org.rut.util.algorithm.Sor ...

  5. 解决死锁之路3 - 常见 SQL 语句的加锁分析 (转)

    出处:https://www.aneasystone.com/archives/2017/12/solving-dead-locks-three.html 这篇博客将对一些常见的 SQL 语句进行加锁 ...

  6. js 中的算法题,那些经常看到的

    js中遇到的算法题不是很多,可以说基本遇不到.但面试的时候,尤其是一些大公司,总是会出这样那样的算法题,考察一个程序员的逻辑思维能力.如下: 1.回文. 回文是指把相同的词汇或句子,在下文中调换位置或 ...

  7. 高性能MySql进化论(十一):常见查询语句的优化

    总结一下常见查询语句的优化方式 1        COUNT 1.       COUNT的作用 ·        COUNT(table.filed)统计的该字段非空值的记录行数 ·         ...

  8. 【JS中循环嵌套常见的六大经典例题+六大图形题,你知道哪几个?】

    首先,了解一下循环嵌套的特点:外层循环转一次,内层循环转一圈. 在上一篇随笔中详细介绍了JS中的分支结构和循环结构,我们来简单的回顾一下For循环结构: 1.for循环有三个表达式,分别为: ①定义循 ...

  9. 常见的排序算法总结(JavaScript)

    引言 排序算法是数据结构和算法之中的基本功,无论是在笔试还是面试,还是实际运用中都有着很基础的地位.这不正直七月,每年校招的备战期,所以想把常见的排序算法记录下来.在本篇文章中的排序算法使用 Java ...

随机推荐

  1. windows环境下mongodb下权限设置

    1.创建超级用户 超级用户位于admin集合下. use admin db.createUser({ user:'admin', pwd:'123456', roles:[{role:'root',d ...

  2. Oracle数据库备份、灾备的23个常见问题

    为了最大限度保障数据的安全性,同时能在不可预计灾难的情况下保证数据的快速恢复,需要根据数据的类型和重要程度制定相应的备份和恢复方案.在这个过程中,DBA的职责就是要保证数据库(其它数据由其它岗位负责) ...

  3. kotlin基础 空值检查

    NULL检查机制 Kotlin的空安全设计对于声明可为空的参数,在使用时要进行空判断处理,有两种处理方式,字段后加!!像Java一样抛出空异常,另一种字段后加?可不做处理返回值为 null或配合?:做 ...

  4. java http get/post请求

    一.http get/post请求 /** * @Description httpPost请求 */ public static String httpPost(String url, String ...

  5. Docker守护式容器

    1.什么是守护式容器 能够长期运行 没有交互式会话 适合运行应用程序和服务 2.以守护形式运行容器 运行交互式容器时以Ctrl+P Ctrl+Q 来退出容器,此时容器还在后台继续运行,我们可以通过do ...

  6. 关于aardio修改注册表默认键值的问题(转)

    今天用aardio做注册表练习  遇到一个问题.  就是不知道怎么用aardio修改已存在的默认的注册表键的值.. 导出注册信息看了一下 默认的和普通的键值不太一样  形式是  @="要写入 ...

  7. BeetlConfiguration扩展配置

    beetl拓展配置类,绑定一些工具类,方便在模板中直接调用 BeetlConfiguration.java public class BeetlConfiguration extends BeetlG ...

  8. 新手學python之新體驗

    1. 使用縮進方式做為程式塊開始結束的標示,程式換行在行末尾加 "\" 2. 元祖(Tuple)數據類型,和List的不同是Tuple不能修改,優點是執行速度比List快,因為不能 ...

  9. Servlet3.0对异步处理的支持

    Servlet工作流程 Servlet 3.0 之前,一个普通 Servlet 的主要工作流程大致如下: Servlet 接收到请求之后,可能需要对请求携带的数据进行一些预处理: 调用业务接口的某些方 ...

  10. Go 关键字Select

    select select 是Go语言中常用的一个关键字,Linux再也早也引入了这个函数,用来实现非阻塞的一种方式,一个select语句用来选择哪个case中的发送或接收操作可以被立即执行.它类似于 ...