CF463D Gargari and Permutations dp
给定 $n<=10$ 个 $1$~$n$ 的排列,求这些排列的 $LCS$.
考虑两个排列怎么做:以第一个序列为基准,将第二个序列的元素按照该元素在第一个序列中出现位置重新编号.
然后,求一个 $LIS$ 即可.
现在是多个串,不妨也按照这个方法来做:
以第一个串为基准,其余串重新编号成该元素在第一个串中的出现位置.
那么,如果一个序列是 $n$ 个序列的 $LCS$,则满足两个条件:
1: 是重现编号后的 $LCS$
2: 这个 $LCS$ 还需是一个 $LIS$.
多了第二个限制,问题就简单了:令 $f[i]$ 表示这些新编号串以 $i$ 数字结尾的满足两个条件的最长长度.
转移什么的就简单了~
code:
#include <bits/stdc++.h>
#define N 1004
using namespace std;
void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
freopen(out.c_str(),"w",stdout);
}
struct node
{
int l,r;
}t[N];
int a[12][N],pos[N],f[N],L[12][N];
int main()
{
// setIO("seq");
int n,i,j,m,ans=1;
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i) for(j=1;j<=n;++j) scanf("%d",&a[i][j]);
for(i=1;i<=n;++i) pos[a[1][i]]=i;
for(i=1;i<=m;++i) for(j=1;j<=n;++j) a[i][j]=pos[a[i][j]];
for(i=1;i<=m;++i) for(j=1;j<=n;++j) L[i][a[i][j]]=j;
f[1]=1;
for(i=2;i<=n;++i)
{
f[i]=1;
for(j=1;j<i;++j)
{
int flag=0;
for(int k=1;k<=10;++k) if(L[k][j]>L[k][i]) flag=1;
if(!flag) f[i]=max(f[i], f[j]+1), ans=max(ans, f[i]);
}
}
printf("%d\n",ans);
return 0;
}
CF463D Gargari and Permutations dp的更多相关文章
- codeforces 463D Gargari and Permutations(dp)
题目 参考网上的代码的... //要找到所有序列中的最长的公共子序列, //定义状态dp[i]为在第一个序列中前i个数字中的最长公共子序列的长度, //状态转移方程为dp[i]=max(dp[i],d ...
- CF 463D Gargari and Permutations [dp]
给出一个长为n的数列的k个排列(1 ≤ n ≤ 1000; 2 ≤ k ≤ 5).求这个k个数列的最长公共子序列的长度 dp[i]=max{dp[j]+1,where j<i 且j,i相应的字符 ...
- [CF463D]Gargari and Permutations
题目大意:给你$k(2\leqslant k\leqslant5)$个$1\sim n(n\leqslant10^3)$的排列,求它们的最长子序列 题解:将$k$个排列中每个元素的位置记录下来.如果是 ...
- 【题解】POJ2279 Mr.Young′s Picture Permutations dp
[题解]POJ2279 Mr.Young′s Picture Permutations dp 钦定从小往大放,然后直接dp. \(dp(t1,t2,t3,t4,t5)\)代表每一行多少人,判断边界就能 ...
- Codeforces Round #264 (Div. 2) D. Gargari and Permutations 多序列LIS+dp好题
http://codeforces.com/contest/463/problem/D 求k个序列的最长公共子序列. k<=5 肯定 不能直接LCS 网上题解全是图论解法...我就来个dp的解法 ...
- Codeforces 463D Gargari and Permutations:隐式图dp【多串LCS】
题目链接:http://codeforces.com/problemset/problem/463/D 题意: 给你k个1到n的排列,问你它们的LCS(最长公共子序列)是多长. 题解: 因为都是1到n ...
- Codeforces #264 (Div. 2) D. Gargari and Permutations
Gargari got bored to play with the bishops and now, after solving the problem about them, he is tryi ...
- CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)
Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive in ...
- Codeforces 463D Gargari and Permutations
http://codeforces.com/problemset/problem/463/D 题意:给出k个排列,问这k个排列的最长公共子序列的长度. 思路:只考虑其中一个的dp:f[i]=max(f ...
随机推荐
- 深度学习-LSTM与GRU
http://www.sohu.com/a/259957763_610300此篇文章绕开了数学公式,对LSTM与GRU采用图文并茂的方式进行说明,尤其是里面的动图,让人一目了然.https://zyb ...
- 记一次stm8l程序跑飞
项目使用stm8l051f3做主控,CC2500做数据接收,不发送. 跑飞的现象就是,刚开始能运行,经过一段未知长度的时间,有可能是3分钟,有可能是30分钟,指示灯不再闪烁,中断按键单片机无反应. 接 ...
- 【Linux】一步一步学Linux——初识Linux命令解析器(10)
目录 00. 目录 01. Shell简介 02. Shell分类 03. 交互式shell和非交互式shell 04. 登录shell和非登录shell 05. Shell类型 06. 参考 00. ...
- xorm -Exist方法实例
判断某个记录是否存在可以使用Exist, 相比Get,Exist性能更好. package main import ( "fmt" _ "github.com/go-sq ...
- iOS核心动画(基础篇)
Core Animation相关内容基本介绍 此框架把屏幕上的内容组合起来,这个内容被分解成图层,放到图层树中,这个树形成了你能在应用程序看到的内容的基础 图层在iOS中就是CALayer类 当我们创 ...
- PKUSC2019题解
$D1T1$:$n$个村庄,第$i$个村庄的人要去第$p_i$个村庄(保证$p_i$为排列),每次可以将相邻两个村庄的人位置交换直到所有人都到达目的地.再给定一个长为$n-1$的排列$a$,表示第$i ...
- Java 并发框架Disruptor(七)
Disruptor VS BlockingQueue的压测对比: import java.util.concurrent.ArrayBlockingQueue; public class ArrayB ...
- HTTPDNS
传统 DNS 缺点 1.域名缓存问题 它可以在本地做一个缓存,也就是说,不是每一个请求,它都会去访问权威 DNS 服务器,而是访问过一次就把结果缓存到自己本地,当其他人来问的时候,直接就返回这 ...
- Autofac在.NetCore 下的使用
在工作开发中很多地方都会使用到接口模式开发,这里就会用到依赖注入,.NetCore目前是自带的 ,在 Startup.cs中的 ConfigureServices方法中增加 public void C ...
- Git使用整理
[本文由水木桶首发于博客园,原文地址:https://www.cnblogs.com/shuimutong/p/11404664.html,未接允许,严禁转载] 背景 很久之前使用的是svn,直接在E ...