首先,数据加载

pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,期中read_csv和read_table这两个使用最多。

1、删除重复元素

使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True。

- keep参数:指定保留哪一重复的行数据
- True 重复的行
  • 创建具有重复元素行的DataFrame
from pandas import Series,DataFrame
import numpy as np
import pandas as pd #创建一个df
np.random.seed(10)
df = DataFrame(data=np.random.randint(0,100,size=(3,5)),index=['A','B','C'],columns=['a','b','c','d','e'])
df
# a b c d e
A 9 15 64 28 89
B 93 29 8 73 0
C 40 36 16 11 54 df.loc['B'] = ['22','22','22','22','22']
df.loc['C'] = ['22','22','22','22','22']
df
# a b c d e
A 9 15 64 28 89
B 22 22 22 22 22
C 22 22 22 22 22
  • 使用duplicated查看所有重复元素行

使用drop_duplicates()函数删除重复的行

  • drop_duplicates(keep='first/last'/False)

2. 映射:指定替换

1) replace()函数:替换元素

 

使用replace()函数,对values进行映射操作

Series替换操作

  • 单值替换

    • 普通替换
    • 字典替换(推荐)
  • 多值替换
    • 列表替换
    • 字典替换(推荐)
  • 参数
    • to_replace:被替换的元素

单值普通替换

eplace参数说明:

  • method:对指定的值使用相邻的值填充替换
  • limit:设定填充次数

DataFrame替换操作

  • 单值替换

    • 普通替换: 替换所有符合要求的元素:to_replace=15,value='e'
    • 按列指定单值替换: to_replace={列标签:替换值} value='value'
  • 多值替换

    • 列表替换: to_replace=[] value=[]
    • 字典替换(推荐) to_replace={to_replace:value,to_replace:value}

2) map()函数:新建一列 , map函数并不是df的方法,而是series的方法

  • map是Series的一个函数
  • map()可以映射新一列数据
  • map()中可以使用lambd表达式
  • map()中可以使用方法,可以是自定义的方法

    eg:map({to_replace:value})

  • 注意 map()中不能使用sum之类的函数,for循环
 

注意:并不是任何形式的函数都可以作为map的参数。只有当一个函数具有一个参数且有返回值,那么该函数才可以作为map的参数。

3. 使用聚合操作对数据异常值检测和过滤

4. 排序

使用.take()函数排序

- take()函数接受一个索引列表,用数字表示,使得df根据列表中索引的顺序进行排序
- eg:df.take([1,3,4,2,5])

可以借助np.random.permutation()函数随机排序

随机抽样

当DataFrame规模足够大时,直接使用np.random.permutation(x)函数,就配合take()函数实现随机抽样

5. 数据分类处理

数据聚合是数据处理的最后一步,通常是要使每一个数组生成一个单一的数值。

数据分类处理:

  • 分组:先把数据分为几组
  • 用函数处理:为不同组的数据应用不同的函数以转换数据
  • 合并:把不同组得到的结果合并起来

数据分类处理的核心:

 - groupby()函数
- groups属性查看分组情况
- eg: df.groupby(by='item').groups

分组

pandas之数据处理的更多相关文章

  1. Pandas缺失数据处理

    Pandas缺失数据处理 Pandas用np.nan代表缺失数据 reindex() 可以修改 索引,会返回一个数据的副本: df1 = df.reindex(index=dates[0:4], co ...

  2. pandas | 使用pandas进行数据处理——DataFrame篇

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构--DataFrame. 上一篇文章当中我们介绍了 ...

  3. Pandas日期数据处理:如何按日期筛选、显示及统计数据

    前言 pandas有着强大的日期数据处理功能,本期我们来了解下pandas处理日期数据的一些基本功能,主要包括以下三个方面: 按日期筛选数据 按日期显示数据 按日期统计数据 运行环境为 windows ...

  4. 5,pandas高级数据处理

    1.删除重复元素 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True - keep参数:指定保留哪一重复的行 ...

  5. Python——Pandas 时间序列数据处理

    介绍 Pandas 是非常著名的开源数据处理库,我们可以通过它完成对数据集进行快速读取.转换.过滤.分析等一系列操作.同样,Pandas 已经被证明为是非常强大的用于处理时间序列数据的工具.本节将介绍 ...

  6. pandas | 使用pandas进行数据处理——Series篇

    本文始发于个人公众号:TechFlow,原创不易,求个关注 上周我们关于Python中科学计算库Numpy的介绍就结束了,今天我们开始介绍一个新的常用的计算工具库,它就是大名鼎鼎的Pandas. Pa ...

  7. python使用pandas进行数据处理

    pandas数据处理 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器输入网址http://loc ...

  8. 【python】pandas & matplotlib 数据处理 绘制曲面图

    Python matplotlib模块,是扩展的MATLAB的一个绘图工具库,它可以绘制各种图形 建议安装 Anaconda后使用 ,集成了很多第三库,基本满足大家的需求,下载地址,对应选择pytho ...

  9. Python基于pandas的数据处理(二)

    14 抽样 df.sample(10, replace = True) df.sample(3) df.sample(frac = 0.5) # 按比例抽样 df.sample(frac = 10, ...

随机推荐

  1. [转]Gnome桌面的录屏插件easyscreencast

    原文地址:https://www.linuxprobe.com/gnome-easyscreencast.html

  2. [LeetCode] 737. Sentence Similarity II 句子相似度 II

    Given two sentences words1, words2 (each represented as an array of strings), and a list of similar ...

  3. 【MongoDB学习之四】索引 聚合 备份与恢复 监控

    环境 MongoDB 4.0 CentOS 6.5_x64 一.索引语法ensureIndex()方法基本语法格式如下所示:>db.COLLECTION_NAME.ensureIndex({KE ...

  4. [Linux]Linux下samba创建共享文件

    1. 安装samba服务 yum install -y samba 2. 创建需要共享的目录 在目录/home/xxxx/share xxx为用户名 mkdir share 修改该目录权限(上层文件夹 ...

  5. Mysql update多表联合更新

    下面我建两个表,并执行一系列sql语句,仔细观察sql执行后表中数据的变化,很容易就能理解多表联合更新的用法 student表                                      ...

  6. ThinkPHP3创建Model模型--对表的操作

    创建Model模型 把"Home/Model"文件夹剪切到Application文件夹下,让Home和Admin共同使用. 第一种实例化模型的方法 第二种实例化模型的方法 第三种实 ...

  7. 错误: 找不到或无法加载主类 java操作hbase出错

    用java操作hbase 利用maven引入hbase包后发现无法启动程序,然后网上说是包的冲突. 我引入了下面三个包然后程序就不能运行了. <dependency> <groupI ...

  8. oracle 在列名后的 (+)是什么意思,如何转换为mysql

    外连接的意思select *from a,bwhere a.id=b.id(+)意思就是返回a,b中匹配的行 和 a中有但是b中没有的行. 参考https://www.cnblogs.com/Aaro ...

  9. PLC采集与控制,实现MES工序管理与品质管控,记录产品的加工数据,工厂生产装配流水线的一次成功应用

    1.通过程序与PLC的采集与控制,实现MES工序管理,品质管控,历史数据追溯的目的 2.大概的流程图 3.有三个地方相关联来实现以上功能,首先是MES的工序管理,设置指定的产品有那些工序,上位机程序扫 ...

  10. [cf 1239 B] The World Is Just a Programming Task (Hard Version)

    题意: 给你一个长度为n的括号序列,你可以交换其中的两个元素,需要使该序列的n个循环移位中合法的括号序列个数尽量多. 输出最大的答案以及交换哪两个元素能够取到这个答案. $n\leq 3\times ...