题目

定义两个非递减数列的笛卡尔和数列\(C = A \oplus B\) 为\((A_i+B_j)\)排序后的非递减数列

\(W\)组询问,问有多少对可能的数列,满足:

\(|C|=s,|A| = m,|B|=s/m\)且\(A \oplus B = C,C = \{ 0,1,\cdots,s-1 \}\)

$1 \le W \le 500 \ , \ 1 \le s , m \le 10^{12} \ , \ 且 m \ | \ s $

题解

  • 这题不好做的原因在于猜不到第一步,暂时还不会证明,证明的瓶颈在于能否证明对于给定一个合法序列A,它的最小的合法序列B满足\(|B| \le |A|\) ,尝试了以晚上无果。。。。

  • 合法的序列\(A \ B\)的布尔序列的生成方式:

    初始时一定都存在\(0\)为\(A , B \ = \ \{ 1 \}\) ,接下来有两种操作:

    1.将\(A\)复制若干遍,\(B\)用全\(0\)补到相同长度

    2.将\(B\)复制若干边,\(A\)用全\(0\)补到相同长度

    1/2开始,交替进行12即可得到所有的合法序列对

  • 讨论12进行的次数之后问题显然对于两维是独立的,变成从1 每次乘以一个非1的数到m的步数

  • 对每个质因子用隔板法统计答案,容斥掉某些位置为1 的情况

  • 时间复杂度:\(O(W\sqrt N log \ s)\)

    #include<bits/stdc++.h>
    #define mod 998244353
    #define ll long long using namespace std; const int N=62;
    ll n,m;
    int ny[N<<1],fac[N<<1],inv[N<<1],d[N],A[N],B[N],ans; void pre(){
    ny[1]=1;for(int i=2;i<=120;++i)ny[i]=1ll*(mod-mod/i)*ny[mod%i]%mod;
    for(int i=fac[0]=inv[0]=1;i<=120;++i)
    fac[i]=1ll*fac[i-1]*i%mod,
    inv[i]=1ll*inv[i-1]*ny[i]%mod;
    }
    void inc(int&x,int y){x+=y;if(x>=mod)x-=mod;}
    void dec(int&x,int y){x-=y;if(x<0)x+=mod;}
    int cal(int x,int y){return x<y?0:1ll*fac[x]*inv[y]%mod*inv[x-y]%mod;}
    void add(int*a,int x){for(int i=1;i<=60;++i)a[i]=1ll*a[i]*cal(x+i-1,i-1)%mod;} void solve(ll x,int*a){
    for(int i=1;i<=60;++i)a[i]=1;
    for(int i=2;1ll*i*i<=x;++i)if(x%i==0){
    int tot=0;while(!(x%i)&&(x/=i))tot++;
    add(a,tot);
    }
    if(x!=1)add(a,1);
    for(int i=1;i<=60;++i)
    for(int j=1;j<i;++j)
    dec(a[i],1ll*cal(i,j)*a[j]%mod);
    } int main(){
    freopen("wsm.in","r",stdin);
    freopen("wsm.out","w",stdout);
    int T;scanf("%d",&T);
    pre();
    while(T--){
    scanf("%lld%lld",&n,&m);
    n/=m;if(n==1||m==1){puts("1");continue;}
    solve(n,A);
    solve(m,B);
    ans=0;
    for(int i=1;i<=60;++i)inc(ans , (2ll*A[i]*B[i]+1ll*A[i+1]*B[i]+1ll*A[i]*B[i+1]) %mod);
    printf("%d\n",ans);
    }
    return 0;
    }

【JZOJ6210】【20190612】wsm的更多相关文章

  1. 【疯狂造轮子-iOS】JSON转Model系列之二

    [疯狂造轮子-iOS]JSON转Model系列之二 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇<[疯狂造轮子-iOS]JSON转Model系列之一> ...

  2. 【疯狂造轮子-iOS】JSON转Model系列之一

    [疯狂造轮子-iOS]JSON转Model系列之一 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 之前一直看别人的源码,虽然对自己提升比较大,但毕竟不是自己写的,很容易遗 ...

  3. 【原创分享·支付宝支付】HBuilder打包APP调用支付宝客户端支付

    前言 最近有点空余时间,所以,就研究了一下APP支付.前面很早就搞完APP的微信支付了,但是由于时间上和应用上的情况,支付宝一直没空去研究.然后等我空了的时候,发现支付宝居然升级了支付逻辑,虽然目前还 ...

  4. 【AutoMapper官方文档】DTO与Domin Model相互转换(上)

    写在前面 AutoMapper目录: [AutoMapper官方文档]DTO与Domin Model相互转换(上) [AutoMapper官方文档]DTO与Domin Model相互转换(中) [Au ...

  5. 【Win 10 应用开发】应用预启动

    所谓预启动,其实你一看那名字就知道是啥意思了,这是直接译,也找不到比这个叫法更简练的词了.在系统资源允许的情况下(比如电池电量充足,有足够的内存空间),系统会把用户常用的应用程序在后台启动,但不会显示 ...

  6. 【Win 10 应用开发】启动远程设备上的应用

    这个功能必须在“红石-1”(build 14393)以上的系统版中才能使用,运行在一台设备上的应用,可以通过URI来启动另一台设备上的应用.激活远程应用需要以下前提: 系统必须是build 14393 ...

  7. 【开源】分享2011-2015年全国城市历史天气数据库【Sqlite+C#访问程序】

    由于个人研究需要,需要采集天气历史数据,前一篇文章:C#+HtmlAgilityPack+XPath带你采集数据(以采集天气数据为例子),介绍了基本的采集思路和核心代码,经过1个星期的采集,历史数据库 ...

  8. 【原创分享·微信支付】C# MVC 微信支付教程系列之现金红包

            微信支付教程系列之现金红包           最近最弄这个微信支付的功能,然后扫码.公众号支付,这些都做了,闲着无聊,就看了看微信支付的其他功能,发现还有一个叫“现金红包”的玩意,想 ...

  9. 【原创分享·微信支付】 C# MVC 微信支付教程系列之扫码支付

    微信支付教程系列之扫码支付                  今天,我们来一起探讨一下这个微信扫码支付.何为扫码支付呢?这里面,扫的码就是二维码了,就是我们经常扫一扫的那种二维码图片,例如,我们自己添 ...

  10. 【原创分享·微信支付】 C# MVC 微信支付教程系列之公众号支付

    微信支付教程系列之公众号支付         今天,我们接着讲微信支付的系列教程,前面,我们讲了这个微信红包和扫码支付.现在,我们讲讲这个公众号支付.公众号支付的应用环境常见的用户通过公众号,然后再通 ...

随机推荐

  1. java之mybatis之缓存

    1.mybatis自带缓存功能.分为一级缓存,二级缓存. 2.一级缓存为 session 缓存,在一个 session中 ,一个查询的 select 语句只会执行一次,根据  <select&g ...

  2. 实战Go内存泄露【转】

    最近解决了我们项目中的一个内存泄露问题,事实再次证明pprof是一个好工具,但掌握好工具的正确用法,才能发挥好工具的威力,不然就算你手里有屠龙刀,也成不了天下第一,本文就是带你用pprof定位内存泄露 ...

  3. 【转载】华为荣耀V9手机如何设置WiFi热点共享

    有时候我们在电脑的时候发现没有无线网络以及有线网络,如果你的手机有相应网络,并且流量足够(当前很多手机流量套餐都是不限量了),可以开启手机上的Wifi热点进行流量共享使用,开启Wifi流量热点后,电脑 ...

  4. wamp环境下配置https证书后,网站内容访问受限

    wamp环境下配置https证书后,网站内容访问受限,点击首页链接标签后报错,大致意思是没有权限进行操作. 解决方法:打开apache的http.conf(位置大致如下:项目所在目录\bin\apac ...

  5. Flask整合WebLoader 用于大附件拆分上传再合并

    博客:https://blog.csdn.net/jinixin/article/details/77545140 github:https://github.com/jinixin/upload-d ...

  6. Linux 里的 2>&1 究竟是什么

    原文 我们在Linux下经常会碰到nohup command>/dev/null 2>&1 &这样形式的命令.首先我们把这条命令大概分解下: 首先就是一个nohup:表示当 ...

  7. C 语言快速入门,21 个小项目足矣!「不走弯路就是捷径」

    C 语言作为大学理工科专业的必修,是很多同学走进编程世界的第一课.那么怎样才能更好的入门 C 语言呢? 下面整理了 21 个 C 语言练手项目,从基础语法开始,逐步深入,通过一个个练手项目,让你轻松驰 ...

  8. 【HCIA Gauss】学习汇总-数据库管理(SQL语法 数据类型 函数)-4

    DDL data definition language 数据库定义语言 定义修改等DML data manipulation language 数据库操控语言 增删改 DCL data crontr ...

  9. String,StringBuffer,StringBuilder区别(笔记)

    String类被final修饰,创建的对象为不可变对象,属于字符串常量. 而StringBuffer与StringBuilder创建的属于字符串常量. StringBuffer的方法大多用了Synch ...

  10. django migrate报错:1005 - Can't create table xxx (errno: 150 "Foreign key constraint is incorrectly formed")

    自从mysql升级,以及使用mariaDB以来,很多不曾更新django中model的外键, 今天,按以前的思路写完外键之后, migrate命令报错: 1005 - Can't create tab ...