Python之NumPy(axis=0/1/2...)的透彻理解
https://blog.csdn.net/sky_kkk/article/details/79725646
numpy中axis取值的说明
首先对numpy中axis取值进行说明:一维数组时axis=0,二维数组时axis=0,1,维数越高,则axis可取的值越大,数组n维时,axis=0,1,…,n。为了方便下面的理解,我们这样看待:在numpy中数组都有着[]标记,则axis=0对应着最外层的[],axis=1对应第二外层的[],以此类推,axis=n对应第n外层的[]。
下面开始从axis=0,axis=1这两个例子开始,深入透彻的理解numpy中axis的用法。
axis = 0表示对最外层[]里的最大单位块做块与块之间的运算,同时移除最外层[]:
a= np.array([1,2,3])
a.sum(axis = 0)
>>>6
123
因为只有一层[],所以直接对这一层里的最大单位快1,2,3做运算;
做完加法后本应是[6],但是移除最外层[]后,[]不存在了,所以返回的是6。
a= np.array([[1,2],[3,4]])
a.sum(axis = 0)
>>>array([4, 6])
123
有两层[],最外层[]里的最大单位块分别为[1,2],[3,4],对这两个单位块做块与块之间的运算,[1,2]+[3,4] = [4, 6];
做完加法后本应是[[4, 6]],但是移除最外层[]后,原来的两层[]变成一层[],所以返回结果为 [4, 6]。
np.array([[[1,2],[3,4]],[[11,12],[13,14]]])
a.sum(axis = 0)
>>>array([[12, 14], [16, 18]])
123
有三层[],最外层[]里的最大单位块分别为[[1,2],[3,4]],[[11,12],[13,14]],对这两个单位块做块与块之间的运算,[[1,2],[3,4]] + [[11,12],[13,14]] = [[12, 14], [16, 18]];
做完加法后本应是[[[12, 14], [16, 18]]],但是移除最外层[]后,原来的三层[]变成两层[],所以返回结果为[[12, 14], [16, 18]];
axis= 1表示对第二外层[]里的最大单位块做块与块之间的运算,同时移除第二外层[]:
a= np.array([1,2,3])
a.sum(axis = 1)
>>>ValueError: 'axis' entry is out of bounds
123
因为只有一层[],axis取值只有一个,为0.
a= np.array([[1,2],[3,4]])
a.sum(axis = 1)
>>>array([3, 7])
123
有两层[],第二外层[]里的最大单位块有两组(因为有两个第二外层[]),第一组是1,2,第二组是3,4,分别对这两个单位块做块与块之间的运算,第一组结果为1+2=3,第二组结果为3+4=7;
做完加法后本应是[[3],[7]],但是**移除第二外层[]**后,原来的两层[]变成一层[],所以返回结果为[3, 7]。
np.array([[[1,2],[3,4]],[[11,12],[13,14]]])
a.sum(axis = 1)
>>>array([[ 4, 6], [24, 26]])
123
有三层[],第二外层[]里的最大单位块有两组(因为有两个第二外层[]),第一组是[1,2],[3,4],第二组是[11,12],[13,14],分别对这两个单位块做块与块之间的运算,第一组结果为[1,2]+[3,4] = [ 4, 6],第二组结果为[11,12]+[13,14] = [24, 26]
做完加法后本应是[[[ 4, 6]], [[24, 26]]],但是**移除第二外层[]**后,原来的三层[]变成两层[],所以返回结果为[[ 4, 6], [24, 26]]
axis = 3,4,5也如此分析
看懂了这些说明,相信你对axis已经有了深入的理解,以后再也不用怕高维数组关于axis的运算了!
Python之NumPy(axis=0/1/2...)的透彻理解的更多相关文章
- Python之NumPy(axis=0 与axis=1)区分
转自:http://blog.csdn.net/wangying19911991/article/details/73928172 https://www.zhihu.com/question/589 ...
- 【python】详解numpy库与pandas库axis=0,axis= 1轴的用法
对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值: axis = 0 代表对横轴操作,也就是第0轴: axis = 1 代表对纵轴操作,也就是第1轴: nu ...
- Python数据分析中 DataFrame axis=0(0轴)与axis=1(1轴)的理解
python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列? 直接上代码people=DataFrame(np.random.randn(5,5), columns=['a ...
- Python数据分析中 DataFrame axis=0与axis=1的理解
python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列? 直接上代码people=DataFrame(np.random.randn(5,5), columns=['a ...
- [Python Cookbook] Numpy: How to Apply a Function to 1D Slices along the Given Axis
Here is a function in Numpy module which could apply a function to 1D slices along the Given Axis. I ...
- numpy中sum(axis=0)和axis=1的计算原理
看起来挺简单的样子,但是在给sum函数中加入参数.sum(a,axis=0)或者是.sum(axis=1) 就有点不解了 在我实验以后发现 我们平时用的sum应该是默认的axis=0 就是普通的相加 ...
- Python数据分析numpy库
1.简介 Numpy库是进行数据分析的基础库,panda库就是基于Numpy库的,在计算多维数组与大型数组方面使用最广,还提供多个函数操作起来效率也高 2.Numpy库的安装 linux(Ubuntu ...
- python之numpy包知识要点总结
一.简介 numpy主要是用来存储和处理大型矩阵,提供了一种存储单一数据类型的多维数组对象------ndarray.还提供了多种运算函数,能够完成数据计算和统计分析,是数据分析的重要工具包. 二.数 ...
- 【Python】 Numpy极简寻路
[Numpy] 先感叹下最近挖坑越来越多了.. 最近想不自量力地挑战下ML甚至DL.然而我也知道对于我这种半路出家,大学数学也只学了两个学期,只学了点最基本的高数还都忘光了的渣滓来说,难度估计有点大. ...
随机推荐
- docker下安装mysql数据库
因为用了.net core 所以想学习下使用docker: 项目中刚好要用到mysql数据库,所用用docker来安装一次,我使用的是5.6版本: 1.拉取官方镜像 docker pull mysql ...
- sqlserver安装教程
1 安装步骤:http://jingyan.baidu.com/article/359911f573f71657fe030603.html 2 当提示装载第二张光盘时,在DAEMON Tools中把第 ...
- Django之创建超级用户
本文链接来自:https://blog.csdn.net/HuaCode/article/details/79721673 首选创建一个新用户,用来登录Django管理网站,进入manage.py目录 ...
- vscode+phpstudy构建php调试环境
由于vs code开源和跨平台,而且插件很多,所以打算以后编写和调试php都用vs code. 配置vs code+phpstudy的php调试环境步骤如下: 1.配置phpstudy,其他选项菜单- ...
- 如何查看服务器对外的IP
开发的时候经常会被IP受限,这是由于数据源方限制了IP,所以需要报备一下IP白名单,怎么查看自己的网络对外的IP呢? 用下面的方式最为准确: Windows上操作: 直接再浏览器访问 http://h ...
- java-Java实现mysql事务处理操作
数据库事务(简称:事务)是数据库管理系统执行过程中的一个逻辑单位,由一个有限的数据库操作序列构成. 并非任意的对数据库的操作序列都是数据库事务.数据库事务拥有以下四个特性,习惯上被称之为ACID特性. ...
- Ubuntu安装Java环境经历
1.权限不够 sudo su gedit /etc/sudoers 添加 用户名 ALL=(ALL:ALL) ALL 2.配置java 放到 /usr/lib/jvm/下 sudo gedit /et ...
- css样式设定样例说明
<style> .classA .classB{*}; //表示设置class为classA标签下的classB标签的样式(A). .classA , .classB{*}; //表示同时 ...
- angularcli 第七篇(service 服务)
在组件中定义的信息是固定的,假设另外一个组件也需要用到这些信息,这时候就用到服务,实现 共享数据 和 方法 组件不应该直接获取或保存数据,它们不应该了解是否在展示假数据. 它们应该聚焦于展示数据,而把 ...
- 利用ansible书写playbook搭建HAProxy+Keepalived+PXC负载均衡和高可用的PXC环境续
ansible.playbook.haproxy.keepalived.PXC haproxy+keepalived双主模式调度pxc集群 HAProxy介绍 反向代理服务器,支持双机热备支持虚拟主机 ...