For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1.

Now given a string representing n, you should return the smallest good base of n in string format.

Example 1:

Input: "13"
Output: "3"
Explanation: 13 base 3 is 111.

Example 2:

Input: "4681"
Output: "8"
Explanation: 4681 base 8 is 11111.

Example 3:

Input: "1000000000000000000"
Output: "999999999999999999"
Explanation: 1000000000000000000 base 999999999999999999 is 11.

Note:

  1. The range of n is [3, 10^18].
  2. The string representing n is always valid and will not have leading zeros.

这道题让我们求最小的好基数,定义了一个大于等于2的基数k,如果可以把数字n转化为各位都是1的数,那么就称这个基数k是好基数。通过看题目中的三个例子,应该大致可以理解题意了吧。如果我们用k表示基数,m表示转为全1数字的位数,那么数字n就可以拆分为:

n = 1 + k + k^2 + k^3 + ... + k^(m-1)

这是一个等比数列,中学数学的内容吧,利用求和公式可以表示为 n = (k^m - 1) / (k - 1)。我们的目标是求最小的k,那么仔细观察这个式子,在n恒定的情况,k越小则m却大,就是说上面的等式越长越好。下面我们来分析m的取值范围,题目中给了n的范围,是 [3, 10^18]。由于k至少为2,n至少为3,那么肯定至少有两项,则 m>=2。再来看m的上限该如何求?其实也不难,想要m最大,k就要最小,k最小是2,那么m最大只能为 log2(n + 1),数字n用二进制表示的时候可拆分出的项最多。但这道题要求变换后的数各位都是1,那么我们看题目中最后一个例子,可以发现,当 k=n-1 时,一定能变成 11,所以实在找不到更小的情况下就返回 n-1。

下面我们来确定k的范围,由于k至少为2,那么就可以根据下面这个不等式来求k的上限:

n = 1 + k + k^2 + k^3 + ... + k^(m-1) > k^(m-1)

解出 k < n^(1 / (m-1)),其实我们也可以可以通过 n < k^m - 1 来求出k的准确的下限,但由于是二分查找法,下限直接使用2也没啥问题。分析到这里,那么解法应该已经跃然纸上了,我们遍历所有可能的m值,然后利用二分查找法来确定k的值,对每一个k值,我们通过联合m值算出总和 sum,然后跟n来对比即可,参见代码如下:

class Solution {
public:
string smallestGoodBase(string n) {
long long num = stol(n);
for (int i = log(num + ) / log(); i >= ; --i) {
long long left = , right = pow(num, 1.0 / (i - )) + ;
while (left < right) {
long long mid = left + (right - left) / , sum = ;
for (int j = ; j < i; ++j) {
sum = sum * mid + ;
}
if (sum == num) return to_string(mid);
if (sum < num) left = mid + ;
else right = mid;
}
}
return to_string(num - );
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/483

参考资料:

https://leetcode.com/problems/smallest-good-base/

https://leetcode.com/problems/smallest-good-base/discuss/96591/Java-O((logn)2)-binary-search-solution

https://leetcode.com/problems/smallest-good-base/discuss/96593/Concise-C%2B%2B-Binary-Search-solution

https://leetcode.com/problems/smallest-good-base/discuss/96590/3ms-AC-C%2B%2B-long-long-int-%2B-binary-search

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 483. Smallest Good Base 最小的好基数的更多相关文章

  1. [LeetCode] Smallest Good Base 最小的好基数

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  2. Leetcode 483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  3. 483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  4. [LeetCode] 910. Smallest Range II 最小区间之二

    Given an array A of integers, for each integer A[i] we need to choose either x = -K or x = K, and ad ...

  5. [LeetCode] 908. Smallest Range I 最小区间

    Given an array A of integers, for each integer A[i] we may choose any x with -K <= x <= K, and ...

  6. [Swift]LeetCode483. 最小好进制 | Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  7. Binary Search-483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  8. [LeetCode] 727. Minimum Window Subsequence 最小窗口子序列

    Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequenceof  ...

  9. [LeetCode] 632. Smallest Range Covering Elements from K Lists 覆盖K个列表元素的最小区间

    You have k lists of sorted integers in ascending order. Find the smallest range that includes at lea ...

随机推荐

  1. 队列和 BFS —— 栈和 DFS

    队列和 BFS: 广度优先搜索(BFS)的一个常见应用是找出从根结点到目标结点的最短路径. 示例 这里我们提供一个示例来说明如何使用 BFS 来找出根结点 A 和目标结点 G 之间的最短路径. 洞悉 ...

  2. MyBatis 构造动态 SQL 语句

    以前看过一个本书叫<深入浅出 MFC >,台湾 C++ 大师写的一本书.在该书中写到这样一句话,“勿在浮沙筑高台”,这句话写的的确对啊.编程很多语言虽然相通,但是真正做还是需要认真的学习, ...

  3. Java 银联云闪付对接记录

    一开始盲目找资料走了弯路: 还是从银联给的官方文档入手最高效: 附件3:云闪付业务商户入网服务指引.pdf http://tomas.test.upcdn.net/pay/%E9%99%84%E4%B ...

  4. Spring源码分析之IOC的三种常见用法及源码实现(三)

    上篇文章我们分析了AnnotationConfigApplicationContext的构造器里refresh方法里的invokeBeanFactoryPostProcessors,了解了@Compo ...

  5. Solr的知识点学习

    Solr单机版的安装与使用 1.Solr单机版的安装与使用,简单写了如何进行Solr的安装与使用.那么很多细节性问题,这里进行简单的介绍.我使用的是Solr与Tomcat整合配置. 2.什么是Solr ...

  6. 使用T4模板同时生成多个类文件

    代码: <#@ template language="C#" debug="false" hostspecific="true"#&g ...

  7. Spring面试题总结的很全面,附带超详细答案

    1.什么是Spring? Spring是一个开源的Java EE开发框架.Spring框架的核心功能可以应用在任何Java应用程序中,但对Java EE平台上的Web应用程序有更好的扩展性.Sprin ...

  8. python3.0安装django2.0、xadmin

    1.操作环境 Windows10.python3.8 2.安装django2.0 pip install django==2.0 x   1 pip install django==2.0 3.安装相 ...

  9. EntityUtils.toString(entity)处理字符集问题解决

    爬取51Job和猎聘网的信息,想处理字符集问题(51job为gbk,猎聘为utf-8), 找到两个网站字符集信息都在同一标签下 就想先把网页保存成String,解析一遍获取字符集,然后将网页转换成对应 ...

  10. JavaScript中的 JSON 和 JSONP

    JSON 和 JSONP JSONP是一种发送JSON数据的方法,无需担心跨域问题.JSONP不使用该XMLHttpRequest对象.JSONP使用<script>标签代替.由于跨域策略 ...